Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck ...Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.展开更多
The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves stora...The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves storage and analysis of network flow statistic. However, this approach loses much valuable information within the Internet traffic. With the advancement of commodity hardware, in particular the volume of storage devices and the speed of interconnect technologies used in network adapter cards and multi-core processors, it is now possible to capture 10 Gbps and beyond real-time network traffic using a commodity computer, such as n2disk. Also with the advancement of distributed file system (such as Hadoop, ZFS, etc.) and open cloud computing platform (such as OpenStack, CloudStack, and Eucalyptus, etc.), it is practical to store such large volume of traffic data and fully in-depth analyse the inside communication within an acceptable latency. In this paper, based on well- known TimeMachine, we present TIFAflow, the design and implementation of a novel system for archiving and querying network flows. Firstly, we enhance the traffic archiving system named TImemachine+FAstbit (TIFA) with flow granularity, i.e., supply the system with flow table and flow module. Secondly, based on real network traces, we conduct performance comparison experiments of TIFAflow with other implementations such as common database solution, TimeMachine and TIFA system. Finally, based on comparison results, we demonstrate that TIFAflow has a higher performance improvement in storing and querying performance than TimeMachine and TIFA, both in time and space metrics.展开更多
With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for pac...With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for packets or flow records have become more and more widely used in network monitoring, network troubleshooting, and user behavior and experience analysis. Among the three key technologies in ITAS, we focus on bitmap index compression algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, COMPAX, VLC, DF-WAH, and VAL-WAH. Based on differences in segmentation, chunking, merge compress, and Near Identical(NI) features, we provide a thorough categorization of the state-of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms, such as SECOMPAX, ICX, MASC, and PLWAH+, and present the state diagrams for their encoding algorithms. We then evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and discuss the future direction of bitmap index compression algorithms. Beyond the application in network security and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space is widely used in analysis in genome data, geographical information system, graph databases, image retrieval, Internet of things, etc. It is expected that bitmap index compression will thrive and be prosperous again in Big Data era since 1980s.展开更多
基金supported by China MOST project (No.2012BAH46B04)
文摘Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.
基金the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2011CB302805)the National Natural Science Foundation of China A3 Program (No. 61161140320) and the National Natural Science Foundation of China (No. 61233016)Intel Research Councils UPO program with title of security Vulnerability Analysis based on Cloud Platform with Intel IA Architecture
文摘The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves storage and analysis of network flow statistic. However, this approach loses much valuable information within the Internet traffic. With the advancement of commodity hardware, in particular the volume of storage devices and the speed of interconnect technologies used in network adapter cards and multi-core processors, it is now possible to capture 10 Gbps and beyond real-time network traffic using a commodity computer, such as n2disk. Also with the advancement of distributed file system (such as Hadoop, ZFS, etc.) and open cloud computing platform (such as OpenStack, CloudStack, and Eucalyptus, etc.), it is practical to store such large volume of traffic data and fully in-depth analyse the inside communication within an acceptable latency. In this paper, based on well- known TimeMachine, we present TIFAflow, the design and implementation of a novel system for archiving and querying network flows. Firstly, we enhance the traffic archiving system named TImemachine+FAstbit (TIFA) with flow granularity, i.e., supply the system with flow table and flow module. Secondly, based on real network traces, we conduct performance comparison experiments of TIFAflow with other implementations such as common database solution, TimeMachine and TIFA system. Finally, based on comparison results, we demonstrate that TIFAflow has a higher performance improvement in storing and querying performance than TimeMachine and TIFA, both in time and space metrics.
基金supported by the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2013CB228206)the National Natural Science Foundation of China A3 Program (No. 61140320)+2 种基金the National Natural Science Foundation of China (Nos. 61233016 and 61472200)supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates (Nos. 201410003033 and 201410003031)Hitachi (China) Research and Development Corporation
文摘With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for packets or flow records have become more and more widely used in network monitoring, network troubleshooting, and user behavior and experience analysis. Among the three key technologies in ITAS, we focus on bitmap index compression algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, COMPAX, VLC, DF-WAH, and VAL-WAH. Based on differences in segmentation, chunking, merge compress, and Near Identical(NI) features, we provide a thorough categorization of the state-of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms, such as SECOMPAX, ICX, MASC, and PLWAH+, and present the state diagrams for their encoding algorithms. We then evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and discuss the future direction of bitmap index compression algorithms. Beyond the application in network security and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space is widely used in analysis in genome data, geographical information system, graph databases, image retrieval, Internet of things, etc. It is expected that bitmap index compression will thrive and be prosperous again in Big Data era since 1980s.