Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous rese...Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).展开更多
Transportation is the lifeblood of a modern metropolis.Accessibility generally refers to the interconnection between nodes in a regional traffic network.The purpose of the paper is to obtain more realistic and accurat...Transportation is the lifeblood of a modern metropolis.Accessibility generally refers to the interconnection between nodes in a regional traffic network.The purpose of the paper is to obtain more realistic and accurate measures of travel speed and to study the road traffic accessibility potential in cities.This study proposes a method for analyzing road traffic accessibility potential which is based on the average travel speed to city centers in off-peak times and which ranks 80 cities around the world.Based on the Suomi National Polar-Orbiting Partnership satellite’s visible-infrared imaging radiometer suite(NPP-VIIRS)night-time light data,urban built-up areas and city centers were extracted.Further,with the aid of the Google Maps application programming interface(API)network crawling technique,travel times and travel distances for several optimal routes to city centers by car were obtained.Feasible proposals for improving road traffic accessibility and planning urban transportation in different cities are presented.The proposed method offers a new possibility of analyzing traffic accessibility using internet data and geo-spatial methods.展开更多
This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network ev...This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.展开更多
This research presented a bi-level programming approach to optimize the schedule of ur- ban road construction activities based on a hypothetical transport network, with an objective of mini- mizing the overall traffic...This research presented a bi-level programming approach to optimize the schedule of ur- ban road construction activities based on a hypothetical transport network, with an objective of mini- mizing the overall traffic delays. A heuristic algorithm was utilized to identify a set of road construction schedules, while PARAMICS was adopted to estimate the total travel time in the network under each road construction scenario. To test the performance of proposed heuristics-simulation methodology, a numerical test was implemented. The overall results suggested that the proposed methodol- ogy could quickly find the optimum solution with good convergence.展开更多
Basing upon the Weber-Fechner Law with respect to the stimulus (distance-headway) to the vehicle driver and the driver’s sensation (speed), the characteristic speed Vβ is defined, which is the critical vehicles flow...Basing upon the Weber-Fechner Law with respect to the stimulus (distance-headway) to the vehicle driver and the driver’s sensation (speed), the characteristic speed Vβ is defined, which is the critical vehicles flow speed just before going to congestion in road traffic flow. From the information of real time measurement of traffic flow speed (V) and time-headway (T) at the specific positions along the road, the value of Vβ is calculated and used for forecasting the flow. Discussed is how to use each Vβ to forecast the congestion. The CN system devoted to the management of road traffic flow is proposed. The idea may contribute not only to easing the traffic flow but also to optimizing it to get high efficient traffic flow.展开更多
Low-volume roads (LVRs) are an integral part of the rural transportation network providing access to remote rural areas and facilitating the movement of goods from farms to markets. These roads pose unique challenges ...Low-volume roads (LVRs) are an integral part of the rural transportation network providing access to remote rural areas and facilitating the movement of goods from farms to markets. These roads pose unique challenges for highway agencies including those related to safety management on the highway network. Specifically, traditional network screening methods using crash history can be effective in screening rural highways with higher traffic volumes and more frequent crashes. However, these traditional methods are often ineffective in screening LVR networks due to low traffic volumes and the sporadic nature of crash occurrence. Further, many of the LVRs are owned and operated by local agencies that may lack access to detailed crash, traffic and roadway data and the technical expertise within their staff. Therefore, there is a need for more efficient and practical network screening approaches to facilitate safety management programs on these roads. This study proposes one such approach which utilizes a heuristic scoring scheme in assessing the level of risk/safety for the purpose of network screening. The proposed scheme is developed based on the principles of US Highway Safety Manual (HSM) analysis procedures for rural highways and the fundamentals in safety science. The primary application of the proposed scheme is for ranking sites in network screening applications or for comparing multiple improvement alternatives at a specific site. The proposed approach does not require access to detailed databases, technical expertise, or exact information, making it an invaluable tool for small agencies and local governments (e.g. counties, townships, tribal governments, etc.).展开更多
基金Supported by the Support Program of the National 12th Five Year-Plan of China(2015BAK25B03)
文摘Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LZJWY22E090002)the Zhejiang Provincial Water Conservancy Science and Technology Plan Project(No.RC2141),China。
文摘Transportation is the lifeblood of a modern metropolis.Accessibility generally refers to the interconnection between nodes in a regional traffic network.The purpose of the paper is to obtain more realistic and accurate measures of travel speed and to study the road traffic accessibility potential in cities.This study proposes a method for analyzing road traffic accessibility potential which is based on the average travel speed to city centers in off-peak times and which ranks 80 cities around the world.Based on the Suomi National Polar-Orbiting Partnership satellite’s visible-infrared imaging radiometer suite(NPP-VIIRS)night-time light data,urban built-up areas and city centers were extracted.Further,with the aid of the Google Maps application programming interface(API)network crawling technique,travel times and travel distances for several optimal routes to city centers by car were obtained.Feasible proposals for improving road traffic accessibility and planning urban transportation in different cities are presented.The proposed method offers a new possibility of analyzing traffic accessibility using internet data and geo-spatial methods.
基金"973"National Key Basic Research & Development Program "Research of the Basic Scientific Issues in the Traffic Congestion Bottlenecks of Big Cities"( No. 2006CB705500)Beijing Science & Technology Program "Research of the New Data Collection Technologies for Transportation Management " (No.D101100049710004)Beijing Science & Technology Program "Research of the Demonstration Platform for the In-tegrated Dynamic Operation Analysis of City Road Networks"(No. D07050600440704)
文摘This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.
基金Supported by the National Natural Science Foundation of China(71131001)
文摘This research presented a bi-level programming approach to optimize the schedule of ur- ban road construction activities based on a hypothetical transport network, with an objective of mini- mizing the overall traffic delays. A heuristic algorithm was utilized to identify a set of road construction schedules, while PARAMICS was adopted to estimate the total travel time in the network under each road construction scenario. To test the performance of proposed heuristics-simulation methodology, a numerical test was implemented. The overall results suggested that the proposed methodol- ogy could quickly find the optimum solution with good convergence.
文摘Basing upon the Weber-Fechner Law with respect to the stimulus (distance-headway) to the vehicle driver and the driver’s sensation (speed), the characteristic speed Vβ is defined, which is the critical vehicles flow speed just before going to congestion in road traffic flow. From the information of real time measurement of traffic flow speed (V) and time-headway (T) at the specific positions along the road, the value of Vβ is calculated and used for forecasting the flow. Discussed is how to use each Vβ to forecast the congestion. The CN system devoted to the management of road traffic flow is proposed. The idea may contribute not only to easing the traffic flow but also to optimizing it to get high efficient traffic flow.
文摘Low-volume roads (LVRs) are an integral part of the rural transportation network providing access to remote rural areas and facilitating the movement of goods from farms to markets. These roads pose unique challenges for highway agencies including those related to safety management on the highway network. Specifically, traditional network screening methods using crash history can be effective in screening rural highways with higher traffic volumes and more frequent crashes. However, these traditional methods are often ineffective in screening LVR networks due to low traffic volumes and the sporadic nature of crash occurrence. Further, many of the LVRs are owned and operated by local agencies that may lack access to detailed crash, traffic and roadway data and the technical expertise within their staff. Therefore, there is a need for more efficient and practical network screening approaches to facilitate safety management programs on these roads. This study proposes one such approach which utilizes a heuristic scoring scheme in assessing the level of risk/safety for the purpose of network screening. The proposed scheme is developed based on the principles of US Highway Safety Manual (HSM) analysis procedures for rural highways and the fundamentals in safety science. The primary application of the proposed scheme is for ranking sites in network screening applications or for comparing multiple improvement alternatives at a specific site. The proposed approach does not require access to detailed databases, technical expertise, or exact information, making it an invaluable tool for small agencies and local governments (e.g. counties, townships, tribal governments, etc.).