为了综合分析YOLO(You Only Look Once)算法在提升交通安全性和效率方面的重要作用,从“人-车-路”3个核心要素的角度,对YOLO算法在交通目标检测中的发展和研究现状进行系统性地总结.概述了YOLO算法常用的评价指标,详细阐述了这些指标...为了综合分析YOLO(You Only Look Once)算法在提升交通安全性和效率方面的重要作用,从“人-车-路”3个核心要素的角度,对YOLO算法在交通目标检测中的发展和研究现状进行系统性地总结.概述了YOLO算法常用的评价指标,详细阐述了这些指标在交通场景中的实际意义.对YOLO算法的核心架构进行概述,追溯了该算法的发展历程,分析各个版本迭代中的优化和改进措施.从“人-车-路”3种交通目标的视角出发,梳理并论述了采用YOLO算法进行交通目标检测的研究现状及应用情况.分析目前YOLO算法在交通目标检测中存在的局限性和挑战,提出相应的改进方法,展望未来的研究重点,为道路交通的智能化发展提供了研究参考.展开更多
尽管基于深度学习的目标检测在交通场景的应用已经取得了一定的进展,但复杂交通场景多目标精度与速度的博弈仍然是个挑战。大多数提升精度的方法都是参数密集型的,大大增加了模型的参数量。针对这一难题,提出了基于YOLOv8的稀疏参数模型...尽管基于深度学习的目标检测在交通场景的应用已经取得了一定的进展,但复杂交通场景多目标精度与速度的博弈仍然是个挑战。大多数提升精度的方法都是参数密集型的,大大增加了模型的参数量。针对这一难题,提出了基于YOLOv8的稀疏参数模型,实现在降低参数量的同时提升模型的召回率和检测精度。首先使用简单注意力机制(Simple Attention Mechanism,SimAM)以建立更强劲的骨干网络提取特征;其次提出轻量化的内容感知特征重组模块(Lightweight Content-Aware ReAssembly of Features,L-CARAFE)代替上采样操作,在一个更大的感受野上聚合上下文信息;最后通过稀疏参数的多解耦头,在降低参数量的同时提升模型的检测精度。由于交通场景的复杂性,不仅通过KITTI数据集验证模型的有效性,还通过COCO数据集验证模型的泛化性。该模型在公开的数据集上均能大幅提升召回率和平均精度(mean Average Precision,mAP),其中,nano在KITTI数据集上以2.95的参数量使召回率和mAP分别提高了3.1%和0.9%,小模型在COCO数据集上的mAP@0.5达到60.6%。展开更多
为提高复杂交通场景下车辆目标检测模型的检测精度,以YOLOv8n(you only look once version 8 nano)为基准模型,设计具有复合主干的Neck-ARW(包括辅助检测分支、RepBlock模块、加权跳跃特征连接)颈部结构,减少信息瓶颈造成沿网络深度方...为提高复杂交通场景下车辆目标检测模型的检测精度,以YOLOv8n(you only look once version 8 nano)为基准模型,设计具有复合主干的Neck-ARW(包括辅助检测分支、RepBlock模块、加权跳跃特征连接)颈部结构,减少信息瓶颈造成沿网络深度方向的信息丢失;引入RepBlock结构重参数化模块,在训练过程中采用多分支结构提高模型特征提取性能;添加P2检测层捕捉更多小目标细节特征,丰富网络内小目标的特征信息流;采用Dynamic Head自注意力机制检测头,将尺度感知、空间感知和任务感知自注意力机制融合到统一框架中,提高检测性能;采用基于层自适应幅度的剪枝(layer-adaptive magnitude based pruning,LAMP)算法,移除模型的冗余参数,构建YOLO-NPDL(Neck-ARW,P2,Dynamic Head,LAMP)车辆目标检测模型。以UA-DETRAC(university at Albany detection and tracking)数据集为试验数据集,分别进行RepBlock模块嵌入位置试验、不同颈部结构对比试验、剪枝试验、消融试验、模型性能对比试验,验证YOLO-NPDL模型的平均精度均值。试验结果表明:RepBlock模块同时嵌入辅助检测分支和颈部主干结构时对多尺度目标的特征提取能力更优,在训练过程中可保留更多的细节信息,但参数量和计算量均增大;采用Neck-ARW颈部结构后模型的平均精度均值E mAP50、E mAP50-95分别提高1.1%、1.7%,参数量减小约17.9%,结构较优;剪枝率为1.3时,模型参数量、计算量分别减小约38.0%、24.0%,冗余通道占比较少,结构较紧凑;与YOLOv8n模型相比,YOLO-NPDL模型在参数量基本相同的基础上,召回率增大2.7%,E mAP50增大2.7%,达到94.7%,E mAP50-95增大6.4%,达到79.7%;与目前广泛使用的YOLO系列模型相比,YOLO-NPDL模型在较少参数量的基础上,检测精度较高。YOLO-NPDL模型在检测远端目标、雨天及夜景等实际复杂交通情景中无明显误检、漏检情况,可检测到更多的远端小目标车辆,检测效果更优。展开更多
文摘为了综合分析YOLO(You Only Look Once)算法在提升交通安全性和效率方面的重要作用,从“人-车-路”3个核心要素的角度,对YOLO算法在交通目标检测中的发展和研究现状进行系统性地总结.概述了YOLO算法常用的评价指标,详细阐述了这些指标在交通场景中的实际意义.对YOLO算法的核心架构进行概述,追溯了该算法的发展历程,分析各个版本迭代中的优化和改进措施.从“人-车-路”3种交通目标的视角出发,梳理并论述了采用YOLO算法进行交通目标检测的研究现状及应用情况.分析目前YOLO算法在交通目标检测中存在的局限性和挑战,提出相应的改进方法,展望未来的研究重点,为道路交通的智能化发展提供了研究参考.
文摘尽管基于深度学习的目标检测在交通场景的应用已经取得了一定的进展,但复杂交通场景多目标精度与速度的博弈仍然是个挑战。大多数提升精度的方法都是参数密集型的,大大增加了模型的参数量。针对这一难题,提出了基于YOLOv8的稀疏参数模型,实现在降低参数量的同时提升模型的召回率和检测精度。首先使用简单注意力机制(Simple Attention Mechanism,SimAM)以建立更强劲的骨干网络提取特征;其次提出轻量化的内容感知特征重组模块(Lightweight Content-Aware ReAssembly of Features,L-CARAFE)代替上采样操作,在一个更大的感受野上聚合上下文信息;最后通过稀疏参数的多解耦头,在降低参数量的同时提升模型的检测精度。由于交通场景的复杂性,不仅通过KITTI数据集验证模型的有效性,还通过COCO数据集验证模型的泛化性。该模型在公开的数据集上均能大幅提升召回率和平均精度(mean Average Precision,mAP),其中,nano在KITTI数据集上以2.95的参数量使召回率和mAP分别提高了3.1%和0.9%,小模型在COCO数据集上的mAP@0.5达到60.6%。
文摘为提高复杂交通场景下车辆目标检测模型的检测精度,以YOLOv8n(you only look once version 8 nano)为基准模型,设计具有复合主干的Neck-ARW(包括辅助检测分支、RepBlock模块、加权跳跃特征连接)颈部结构,减少信息瓶颈造成沿网络深度方向的信息丢失;引入RepBlock结构重参数化模块,在训练过程中采用多分支结构提高模型特征提取性能;添加P2检测层捕捉更多小目标细节特征,丰富网络内小目标的特征信息流;采用Dynamic Head自注意力机制检测头,将尺度感知、空间感知和任务感知自注意力机制融合到统一框架中,提高检测性能;采用基于层自适应幅度的剪枝(layer-adaptive magnitude based pruning,LAMP)算法,移除模型的冗余参数,构建YOLO-NPDL(Neck-ARW,P2,Dynamic Head,LAMP)车辆目标检测模型。以UA-DETRAC(university at Albany detection and tracking)数据集为试验数据集,分别进行RepBlock模块嵌入位置试验、不同颈部结构对比试验、剪枝试验、消融试验、模型性能对比试验,验证YOLO-NPDL模型的平均精度均值。试验结果表明:RepBlock模块同时嵌入辅助检测分支和颈部主干结构时对多尺度目标的特征提取能力更优,在训练过程中可保留更多的细节信息,但参数量和计算量均增大;采用Neck-ARW颈部结构后模型的平均精度均值E mAP50、E mAP50-95分别提高1.1%、1.7%,参数量减小约17.9%,结构较优;剪枝率为1.3时,模型参数量、计算量分别减小约38.0%、24.0%,冗余通道占比较少,结构较紧凑;与YOLOv8n模型相比,YOLO-NPDL模型在参数量基本相同的基础上,召回率增大2.7%,E mAP50增大2.7%,达到94.7%,E mAP50-95增大6.4%,达到79.7%;与目前广泛使用的YOLO系列模型相比,YOLO-NPDL模型在较少参数量的基础上,检测精度较高。YOLO-NPDL模型在检测远端目标、雨天及夜景等实际复杂交通情景中无明显误检、漏检情况,可检测到更多的远端小目标车辆,检测效果更优。