Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usa...Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications.展开更多
Traffic modeling is a key step in several intelligent transportation systems(ITS) applications. This paper regards the traffic modeling through the enhancement of the cell transmission model. It considers the traffi...Traffic modeling is a key step in several intelligent transportation systems(ITS) applications. This paper regards the traffic modeling through the enhancement of the cell transmission model. It considers the traffic flow as a hybrid dynamic system and proposes a piecewise switched linear traffic model. The latter allows an accurate modeling of the traffic flow in a given section by considering its geometry. On the other hand, the piecewise switched linear traffic model handles more than one congestion wave and has the advantage to be modular. The measurements at upstream and downstream boundaries are also used in this model in order to decouple the traffic flow dynamics of successive road portions. Finally, real magnetic sensor data, provided by the performance measurement system on a portion of the Californian SR60-E highway are used to validate the proposed model.展开更多
基金the Scientific Research Funding Project of Liaoning Education Department of China under Grant No.JDL2020005,No.LJKZ0485the National Key Research and Development Program of China under Grant No.2018YFA0704605.
文摘Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications.
文摘Traffic modeling is a key step in several intelligent transportation systems(ITS) applications. This paper regards the traffic modeling through the enhancement of the cell transmission model. It considers the traffic flow as a hybrid dynamic system and proposes a piecewise switched linear traffic model. The latter allows an accurate modeling of the traffic flow in a given section by considering its geometry. On the other hand, the piecewise switched linear traffic model handles more than one congestion wave and has the advantage to be modular. The measurements at upstream and downstream boundaries are also used in this model in order to decouple the traffic flow dynamics of successive road portions. Finally, real magnetic sensor data, provided by the performance measurement system on a portion of the Californian SR60-E highway are used to validate the proposed model.