Electric tractors(ETs)with mounted implements form operating units.There are significant differences in parameters such as shape,firmness,and moisture content of the soil in contact with the tractor and implements whe...Electric tractors(ETs)with mounted implements form operating units.There are significant differences in parameters such as shape,firmness,and moisture content of the soil in contact with the tractor and implements when working in complex terrains such as field stubble,waterlogged silt,and loose/firm terrain.These differentiated dynamics prevent cooperation between ETs and operating implements under independent control,resulting in poor quality operations and low energy efficiency.We propose a control mechanism for ETs and implements to achieve full life cycle management of collaborative control tasks,instantaneous intertask interaction,and a multitask synchronization mechanism.To address the internal redundant communication problems caused by traditional distributed microcontrol units,we break through the underlying technology of unit data processing and interaction and develop an integrated high-performance controller structure with high processing capacity and high-and low-speed communication interfaces.On the basis of hierarchical stepwise control theory,a hierarchical real-time operating system is designed.This system realizes a preemptive kernel response of computational tasks and competitive-collaborative synchronization among tasks;overcomes the low-latency response of collaborative control tasks,instantaneous information interaction,and multitask synchronization problems;and provides system-level support for deep collaborative operation control of units.To demonstrate and validate the proposed collaborative control mechanism,a plowing collaborative operation management strategy is designed and deployed.The experimental results show that the communication delay of collaborative tasks is as low as 83μs,the solution time of complex collaborative equations is as low as 46 ms,the mechanical efficiency of the ET is increased by 9.07%,the efficiency of the drive motor is increased by 9.72%,the stability of the operation speed is increased by 106.25%,and the stability of the plowing depth reaches 94.98%.Our work meets the hardware and software requirements for realizing complex collaborative control of ET units and improves the operational quality and operational energy efficiency in real vehicle demonstrations.展开更多
Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to sim...Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration.A term called dynamic effective tractoring force(DETF)is defined and used to evaluate friction reduction effectiveness.The factors influencing the DETF are studied,and the tool placement optimization problem is investigated.The studyfinds that the drilling rate of penetration(ROP)can lower the DETF but does not change the trend of the DETF curve.To effectively work,the shock tool stiffness must be greater than some critical value.For the case study,the best oscillating frequency is within 15∼20 Hz.The reflection of the vibration at the bit boundary can intensify or weaken the friction reduction effec-tiveness,depending on the distance between the hydraulic oscillator and the bit.The optimal placement position corresponds to the plateau stage of the DETF curve.The reliability of the method is verified by thefield tests.The proposed method can provide a design and use guide to hydraulic oscillators and improve friction reduction effectiveness in horizontal wells.展开更多
In a tractor automatic navigation system, path planning plays a significant role in improving operation efficiency. This study aims to create a suboptimal reference course for headland turning of a robot tractor and d...In a tractor automatic navigation system, path planning plays a significant role in improving operation efficiency. This study aims to create a suboptimal reference course for headland turning of a robot tractor and design a path-tracking controller to guide the robot tractor along the reference course. A time-minimum suboptimal control method was used to generate the reference turning course based on the mechanical parameters of the test tractor. A path-tracking controller consisting of both feedforward and feedback component elements was also proposed. The feedforward component was directly determined by the desired steering angle of the current navigation point on the reference course, whereas the feedback component was derived from the designed optimal controller. Computer simulation and field tests were performed to validate the path-tracking performance. Field test results indicated that the robot tractor followed the reference courses precisely on flat meadow, with average and standard lateral devia- tions being 0.031 m and 0.086 m, respectively. However, the tracking error increased while operating on sloping meadow due to the employed vehicle kinematic model.展开更多
Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However...Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.展开更多
An aircraft tractor plays a significant role as a kind of important marine transport and support equipment. It's necessary to study its controlling and manoeuvring stability to improve operation efficiency. A virtual...An aircraft tractor plays a significant role as a kind of important marine transport and support equipment. It's necessary to study its controlling and manoeuvring stability to improve operation efficiency. A virtual prototyping model of the tractor-aircraft system based on Lagrange's equation of the first kind with Lagrange mutipliers was established in this paper, According to the towing characteristics, a path-tracking controller using fuzzy logic theory was designed. Direction control herein was carried out through a compensatory tracking approach. Interactive co-simulation was performed to validate the path-tracking behavior in closed-loop, Simulation results indicated that the tractor followed the reference courses precisely on a flat ground.展开更多
A new type continuous variable transmission device, a hydro-mechanical continuously variable transmission (HMCVT) for agricultural tractors is developed, which is composed of a single planetary gear differential tra...A new type continuous variable transmission device, a hydro-mechanical continuously variable transmission (HMCVT) for agricultural tractors is developed, which is composed of a single planetary gear differential train, a hydraulic transmission system consisted of variable displacement pump and fixed displacement motor and a multi-gear fixed step radio transmission. Based on the analysis of types of hydrostatic mechanical transmission (HMT) and styles of hydraulic transmission, the general drive scheme for HMCVT is obtained. The method of selecting mechanical parameters and hydraulic units is explained, and the stepless speed regulation characteristic of HMCVT is analyzed. This paper also specializes the calculating method of transmission efficiency. It shows that tractors assembled with HMCVT can obtain a continuously variable speed and achieve high drive efficiency.展开更多
In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,inc...In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,including an electric motor drive system,a battery ballast system,and an electro–hydraulic suspension system.This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions,leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front-and rear-axle loads of a tractor.Finally,the tractor is prototyped and assembled,and ploughing tests are carried out.The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83%and increases the traction efficiency by 10.28%compared with the average torquedistribution mode.Compared with the conventional traction control mode,the joint control method for traction and ballast proposed in this paper results in a 3.7%increase in traction efficiency,a 15.05%decrease in slip,and a 4.9%reduction in total drive motor energy consumption.This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions.展开更多
In this paper,the user interface of tractor cab real-time information management system was designed. Based on the principle of "user friendly",it reasonably arranged spatial position of information manageme...In this paper,the user interface of tractor cab real-time information management system was designed. Based on the principle of "user friendly",it reasonably arranged spatial position of information management system according to spatial distribution of tractor cab. Then,it analyzed operation habits and thinking ways of drivers,and formulated design principle meeting demands of drivers. Besides,it used LabView software to design user interface,including interface layout and interface design. User interface includes basic information interface,job information interface,camera monitoring interface,and fault diagnosis interface. Finally,it made evaluation of the user interface from color,indicator lamp,dial,and pointer. Results indicate that the designed user interface layout conforms to cognition mentality and operation habits and easy to get familiar and grasp; graphical interface is vivid and easy to stimulate pleasure of drivers in operation; interface color matching is coordinated; the layout of controls is hierarchical and logic,and operating mode is consistent with Windows system.展开更多
In this study, tractor power output, fuel consumption rate and work performance were indirectly predicted in order to develop an eco driving system. Firstly, equations were developed which could foretell tractor power...In this study, tractor power output, fuel consumption rate and work performance were indirectly predicted in order to develop an eco driving system. Firstly, equations were developed which could foretell tractor power output and fuel consumption rate using characteristic curves of tractor power output. Secondly, with actual engine revolution per minute (rpm) determined by initial engine rpm and work load, tractor power output and fuel consumption rate were forecasted. Thirdly, it was possible to foresee tractor work performance and fuel consumption rate by the speed signals of Global Positioning System (GPS). Lastly, precision of the eco driving system was evaluated through tractor Power Take-Off (PTO) test, and effects of the eco driving system were investigated in the plowing and rotary tilling operations. Engine rpm, power output, fuel consumption rate, work performance and fuel consumption rate per plot area were displayed on the eco driving system. Predicted tractor power outputs in the full load curve were well coincided with the actual power output of prototype, but small differences, 1 to 6 kW were found in the part load curve. Error of the fuel consumption rate was 0.5 to 3 L/h at the part load curve. It was shown that 69% and 53% of fuel consumption rates could be reduced in plowing and rotary tilling operations, respectively, when the eco driving system was installed in tractor.展开更多
During oil-gas well drilling and completion, downhole tools and apparatus should be conveyed to the destination to complete a series of downhole works. Downhole tractors have been used to convey tools in complex wellb...During oil-gas well drilling and completion, downhole tools and apparatus should be conveyed to the destination to complete a series of downhole works. Downhole tractors have been used to convey tools in complex wellbores, however a very large tractive force is needed to carry more downhole tools to accomplish works with high efficiency. A novel serial active helical drive downhole tractor which has significantly improved performance compared with previous work is proposed. All previously reported helical drive downhole tractors need stators to balance the torque generated by the rotator. By contrast, the proposed serial downhole tractor does not need a stator; several rotator-driven units should only be connected to one another to achieve a tractive force multifold higher than that was previously reported. As a result, the length of a single unit is shortened, and the motion flexibility of the downhole tractor is increased. The major performance indicators, namely, gear ratio, velocity, and tractive force, are analyzed. Experimental results show that the maximum tractive force of a single-unit prototype with a length of 900 mm is 165.3 kg or 1620 N. The analysis and experimental results show that the proposed design has considerable potential for downhole works.展开更多
Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet th...Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet the needs of the operation.Aiming at the coupling multi-task in the intelligent production of vegetables in the open field,the task assignment method for multiple unmanned tractors based on consistency alliance is studied.Firstly,unmanned vegetable production in the open field is abstracted as a multi-task assignment model with constraints of task demand,task sequence,and the distance traveled by an unmanned tractor.The tight time constraints between associated tasks are transformed into time windows.Based on the driving distance of the unmanned tractor and the replacement cost of the tools,an expanded task cost function is innovatively established.The task assignment model of multiple unmanned tractors is optimized by the consensus based bundle algorithm(CBBA)with time windows.Experiments show that the method can effectively solve task conflict in unmanned production and optimize task allocation.A basic model is provided for the cooperative task of multiple unmanned tractors for vegetable production in the open field.展开更多
An Electro-hydraulic loading system is designed based on a test-bed of tractor's hydraulic steering by-wire. To simulate the steering resistance driving tractor in many kinds of soils and roads,the loading force i...An Electro-hydraulic loading system is designed based on a test-bed of tractor's hydraulic steering by-wire. To simulate the steering resistance driving tractor in many kinds of soils and roads,the loading force is controlled to make proportional and continuous variable by an electro-hydraulic proportional relief valve. A steering resistance loading test-bed is built to test three kinds of steering resistance including constant,step and sine style. Tire lateral resistance is also tested under different steering conditions. The result shows that the electro-hydraulic loading system has high stability and following performance. Besides,the system's steady state error is lower than 3. 1%,and it meets the test requirement of tractor's hydraulic steering by-wire.展开更多
A novel data acquisition system was successfully integrated on-board the Massey Ferguson 3,000 series agricultural tractors for measuring tractor-implement performance. A commercial load cell was incorporated into the...A novel data acquisition system was successfully integrated on-board the Massey Ferguson 3,000 series agricultural tractors for measuring tractor-implement performance. A commercial load cell was incorporated into the existing system for the needed tractor-implement performance, measurements. This system is capable of measuring, displaying and recording, in real-time, the tractor's theoretical travel speed, the actual travel speed, the engine speed, the fuel consumption rate, and the drawbar pull. Static calibration tests on various associated sensors for the required measurements show excellent linearity with correlation coefficients that are close to 1. The developed system was extensively and successfully field demonstrated for tractor-implement performance with offset disc harrows on dry, undisturbed loamy soils. Under these conditions, a ratio of tractor power to implement width is suggested. The data also show the existence of a linear relationship between fuel consumption per hectare and specific draught, for the 4 to 9 kN m^-1 range, which suggests the possibility of extending the American Society of Agricultural and Biological Engineers model of draught prediction to forecast fuel consumption. The configuration of the tractor-harrow combination, based on the measurement of the draught required under operational conditions, provides the manufacturers with a reliable indication of the recommended power required for each harrow model. With this type of information farmers can make decisions regarding selection of a suitable tractor-implement combination for their farms. As a consequence, there is improved tractor-harrow productivity and field efficiency.展开更多
Based on an exact CAD model of hydro-mechanical continuously variable transmission (HMCVT) gearbox which can transmit 180 horsepower, virtual prototype of the HMCVT was built. Revolution speed of shafts, gears and c...Based on an exact CAD model of hydro-mechanical continuously variable transmission (HMCVT) gearbox which can transmit 180 horsepower, virtual prototype of the HMCVT was built. Revolution speed of shafts, gears and clutches of the HMCVT were calibrated by using results obtained by theoretical calculation and test methods. The needed power and torques of both mechanical power input shaft and hydropower input shaft were calculated by simulation. Hydraulic power distributing ratio and power flow of the system was also studied. The analysis results showed that cycle power was produced inevitably when the output shaft speed of HMCVT change smoothly during mechanical and hydraulic working state HM1 to HM4, and the instantaneous maximum cycle power was 39.5%. Then the overall transmission efficiency of HMCVT was studied, and the maximum overall efficiency of the system was about 87%. The results of the studies gave references to select suited engine and variable displacement pump for the HMCVT, and to develop rational speed control strategies for the HMCVT by changing displacement ratio of variable displacement pump.展开更多
This research aims at using a dynamic model of tractor system to support navigation system design for an automati- cally guided agricultural tractor. This model, consisting of a bicycle model of the tractor system, ha...This research aims at using a dynamic model of tractor system to support navigation system design for an automati- cally guided agricultural tractor. This model, consisting of a bicycle model of the tractor system, has been implemented in the MATLAB environment and was developed based on a John Deere tractor. The simulation results from this MATLAB model was validated through field navigation tests. The accuracy of the trajectory estimation is strongly affected by the determination of the cornering stiffness of the tractor. In this simulation, the tractor cornering stiffness analysis was identified during simulation analysis using the MATLAB model based on the recorded trajectory data. The obtained data was used in simulation analyses for various navigation operations in the field of interest. The analysis on field validation test results indicated that the developed tractor system could accurately estimate wheel trajectories of a tractor system while operating in agricultural fields at various speeds. The results also indicated that the developed system could accurately determine tractor velocity and steering angle while the tractor operates in curved fields.展开更多
Robot technology is a very promising technology for agricultural sector, but the existing industrial robot could not deliver the above-mentioned criteria. Industrial robot mainly uses high voltage electrical power, wh...Robot technology is a very promising technology for agricultural sector, but the existing industrial robot could not deliver the above-mentioned criteria. Industrial robot mainly uses high voltage electrical power, which is not available at field and outdoor operation. The only available and reliable power is a hydraulic from the tractor. The harvester robot consumes the hydraulic power from the tractor and at the same time the tractor can be used as a traveling device for the robot. This paper describes the study on the development of autonomous tractor for the oil palm harvester. The development took considerations on the design of the electro-hydraulic system and the control software for the robot structure to be flexible enough to operate in plantation environment.展开更多
The ITER (international thermonuclear experimental reactor) tractor is an in-cask remote handling equipment, its tilting and lifting mechanism is important for the tractor operated with forty-five-ton plug in front ...The ITER (international thermonuclear experimental reactor) tractor is an in-cask remote handling equipment, its tilting and lifting mechanism is important for the tractor operated with forty-five-ton plug in front of the ports of Hot Cell and VV (vacuum vessel) successfully. In order to better analyse the movement of this mechanism and decide the key design parameters accurately, a mathematical model of 7-1ink complicated plane mechanism was built up, and the calculation of design and kinematics simulation were implemented. The established mathematical model was proved to be valid by comparing the calculated result with that of kinematics simulation. Finally, the structure analysis and the optimization of its key part, tilting and lifting frame, were performed to guarantee the frame's strength in bearing the heavy load of plug.展开更多
Due to the non-standardization and complexity of the farmland environment,it is always a huge challenge for tractors to achieve fully autonomy(work at Self-driving mode)all the time in agricultural industry.Whereas,wh...Due to the non-standardization and complexity of the farmland environment,it is always a huge challenge for tractors to achieve fully autonomy(work at Self-driving mode)all the time in agricultural industry.Whereas,when tractors work in the Tele-driving(or Remote driving)mode,the operators are prone to fatigue because they need to concentrate for long periods of time.In response to these,a dual-mode control strategy was proposed to integrate the advantages of both approaches,i.e.,by combing Self-driving at most of the time with Tele-driving under special(complex and hazardous)conditions through switching control method.First,the state switcher was proposed,which is used for smooth switching the driving modes according to different working states of a tractor.Then,the state switching control law and the corresponding subsystem tracking controllers were designed.Finally,the effectiveness and superiority of the dualmode control method were evaluated via actual experimental testing of a tractor whose results show that the proposed control method can switch smoothly,stably,and efficiently between the two driving modes automatically.The average control accuracy has been improved by 20%and 15%respectively,compared to the conventional Tele-driving control and Self-driving control with low-precision navigation.In conclusion,the proposed dualmode control method can not only satisfy the operation in the complex and changeable farmland environment,but also free drivers from high-intensity and fatiguing work.This provides a perfect application solution and theoretical support for the intelligentization of unmanned farm agricultural machinery with high safety and reliability.展开更多
Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be c...Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be considered as the one of Minkowski exactly at the interface. In contrast, the presence of loss inside matter, either in the half-immersed object or in the background, causes optical pushing of the object. Our analysis suggests that for half-immersed plasmonic or lossy dielectric, the transferred momentum of photon can mathematically be modeled as the type of Minkowski and also of Abraham. However, according to a final critical analysis, the idea of Abraham momentum transfer has been rejected. Hence,an obvious question arises: whence the Abraham momentum? It is demonstrated that though the transferred momentum to a half-immersed Mie object(lossy or lossless) can better be considered as the Minkowski momentum, Lorentz force analysis suggests that the momentum of a photon traveling through the continuous background, however, can be modeled as the type of Abraham. Finally, as an interesting sidewalk, a machine learning based system has been developed to predict the time-averaged force within a very short time avoiding time-consuming full wave simulation.展开更多
基金supported by the National Key Research and Development Plan of China(2022YFD2001202)the National Natural Science Foundation of China(32301719 and 52272444)the 2115 Talent Development Program of China Agricultural University.
文摘Electric tractors(ETs)with mounted implements form operating units.There are significant differences in parameters such as shape,firmness,and moisture content of the soil in contact with the tractor and implements when working in complex terrains such as field stubble,waterlogged silt,and loose/firm terrain.These differentiated dynamics prevent cooperation between ETs and operating implements under independent control,resulting in poor quality operations and low energy efficiency.We propose a control mechanism for ETs and implements to achieve full life cycle management of collaborative control tasks,instantaneous intertask interaction,and a multitask synchronization mechanism.To address the internal redundant communication problems caused by traditional distributed microcontrol units,we break through the underlying technology of unit data processing and interaction and develop an integrated high-performance controller structure with high processing capacity and high-and low-speed communication interfaces.On the basis of hierarchical stepwise control theory,a hierarchical real-time operating system is designed.This system realizes a preemptive kernel response of computational tasks and competitive-collaborative synchronization among tasks;overcomes the low-latency response of collaborative control tasks,instantaneous information interaction,and multitask synchronization problems;and provides system-level support for deep collaborative operation control of units.To demonstrate and validate the proposed collaborative control mechanism,a plowing collaborative operation management strategy is designed and deployed.The experimental results show that the communication delay of collaborative tasks is as low as 83μs,the solution time of complex collaborative equations is as low as 46 ms,the mechanical efficiency of the ET is increased by 9.07%,the efficiency of the drive motor is increased by 9.72%,the stability of the operation speed is increased by 106.25%,and the stability of the plowing depth reaches 94.98%.Our work meets the hardware and software requirements for realizing complex collaborative control of ET units and improves the operational quality and operational energy efficiency in real vehicle demonstrations.
文摘Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration.A term called dynamic effective tractoring force(DETF)is defined and used to evaluate friction reduction effectiveness.The factors influencing the DETF are studied,and the tool placement optimization problem is investigated.The studyfinds that the drilling rate of penetration(ROP)can lower the DETF but does not change the trend of the DETF curve.To effectively work,the shock tool stiffness must be greater than some critical value.For the case study,the best oscillating frequency is within 15∼20 Hz.The reflection of the vibration at the bit boundary can intensify or weaken the friction reduction effec-tiveness,depending on the distance between the hydraulic oscillator and the bit.The optimal placement position corresponds to the plateau stage of the DETF curve.The reliability of the method is verified by thefield tests.The proposed method can provide a design and use guide to hydraulic oscillators and improve friction reduction effectiveness in horizontal wells.
基金Project (No. 2006AA10A304) supported by the Hi-Tech Researchand Development Program (863) of China
文摘In a tractor automatic navigation system, path planning plays a significant role in improving operation efficiency. This study aims to create a suboptimal reference course for headland turning of a robot tractor and design a path-tracking controller to guide the robot tractor along the reference course. A time-minimum suboptimal control method was used to generate the reference turning course based on the mechanical parameters of the test tractor. A path-tracking controller consisting of both feedforward and feedback component elements was also proposed. The feedforward component was directly determined by the desired steering angle of the current navigation point on the reference course, whereas the feedback component was derived from the designed optimal controller. Computer simulation and field tests were performed to validate the path-tracking performance. Field test results indicated that the robot tractor followed the reference courses precisely on flat meadow, with average and standard lateral devia- tions being 0.031 m and 0.086 m, respectively. However, the tracking error increased while operating on sloping meadow due to the employed vehicle kinematic model.
基金supported by Open Research Fund of State Key Laboratory of Automobile Dynamics Simulation, China (Grant No. 20101103)National Natural Science Foundation of China (Grant No. 51075176)
文摘Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.
基金Harbin Technological Innovation Research Fund(NO:2012RFXXG039)
文摘An aircraft tractor plays a significant role as a kind of important marine transport and support equipment. It's necessary to study its controlling and manoeuvring stability to improve operation efficiency. A virtual prototyping model of the tractor-aircraft system based on Lagrange's equation of the first kind with Lagrange mutipliers was established in this paper, According to the towing characteristics, a path-tracking controller using fuzzy logic theory was designed. Direction control herein was carried out through a compensatory tracking approach. Interactive co-simulation was performed to validate the path-tracking behavior in closed-loop, Simulation results indicated that the tractor followed the reference courses precisely on a flat ground.
基金Fund of Henan Innovation Project for University Prominent Research Talents (2002KYCX010) Youth Scientific Research Foundation of Henan University of Science and Technology (2004QN030)
文摘A new type continuous variable transmission device, a hydro-mechanical continuously variable transmission (HMCVT) for agricultural tractors is developed, which is composed of a single planetary gear differential train, a hydraulic transmission system consisted of variable displacement pump and fixed displacement motor and a multi-gear fixed step radio transmission. Based on the analysis of types of hydrostatic mechanical transmission (HMT) and styles of hydraulic transmission, the general drive scheme for HMCVT is obtained. The method of selecting mechanical parameters and hydraulic units is explained, and the stepless speed regulation characteristic of HMCVT is analyzed. This paper also specializes the calculating method of transmission efficiency. It shows that tractors assembled with HMCVT can obtain a continuously variable speed and achieve high drive efficiency.
基金supported by the National Key Research and Development Plan of China(2022YFD2001201)the Beijing Postdoctoral Research Foundation(2023-ZZ-112)+1 种基金the National Natural Science Foundation of China(52272444)the Natural Science Foundation of Jiangsu Province(BK20230548).
文摘In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,including an electric motor drive system,a battery ballast system,and an electro–hydraulic suspension system.This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions,leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front-and rear-axle loads of a tractor.Finally,the tractor is prototyped and assembled,and ploughing tests are carried out.The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83%and increases the traction efficiency by 10.28%compared with the average torquedistribution mode.Compared with the conventional traction control mode,the joint control method for traction and ballast proposed in this paper results in a 3.7%increase in traction efficiency,a 15.05%decrease in slip,and a 4.9%reduction in total drive motor energy consumption.This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions.
基金Supported by Science and Technology Support Program of Jiangsu Province(Agriculture)(BE2012384)Special Fund for Conversion of Scientific and Technological Achievements in Jiangsu Province(BA2010055)
文摘In this paper,the user interface of tractor cab real-time information management system was designed. Based on the principle of "user friendly",it reasonably arranged spatial position of information management system according to spatial distribution of tractor cab. Then,it analyzed operation habits and thinking ways of drivers,and formulated design principle meeting demands of drivers. Besides,it used LabView software to design user interface,including interface layout and interface design. User interface includes basic information interface,job information interface,camera monitoring interface,and fault diagnosis interface. Finally,it made evaluation of the user interface from color,indicator lamp,dial,and pointer. Results indicate that the designed user interface layout conforms to cognition mentality and operation habits and easy to get familiar and grasp; graphical interface is vivid and easy to stimulate pleasure of drivers in operation; interface color matching is coordinated; the layout of controls is hierarchical and logic,and operating mode is consistent with Windows system.
文摘In this study, tractor power output, fuel consumption rate and work performance were indirectly predicted in order to develop an eco driving system. Firstly, equations were developed which could foretell tractor power output and fuel consumption rate using characteristic curves of tractor power output. Secondly, with actual engine revolution per minute (rpm) determined by initial engine rpm and work load, tractor power output and fuel consumption rate were forecasted. Thirdly, it was possible to foresee tractor work performance and fuel consumption rate by the speed signals of Global Positioning System (GPS). Lastly, precision of the eco driving system was evaluated through tractor Power Take-Off (PTO) test, and effects of the eco driving system were investigated in the plowing and rotary tilling operations. Engine rpm, power output, fuel consumption rate, work performance and fuel consumption rate per plot area were displayed on the eco driving system. Predicted tractor power outputs in the full load curve were well coincided with the actual power output of prototype, but small differences, 1 to 6 kW were found in the part load curve. Error of the fuel consumption rate was 0.5 to 3 L/h at the part load curve. It was shown that 69% and 53% of fuel consumption rates could be reduced in plowing and rotary tilling operations, respectively, when the eco driving system was installed in tractor.
基金Supported by Sichuan Provincial Science and Technology Program of China(Grant Nos.2013GZ0150,2014GZ0121)Research Project of Key Laboratory of Fluid and Power Machinery of Ministry of Education,Xihua University,China
文摘During oil-gas well drilling and completion, downhole tools and apparatus should be conveyed to the destination to complete a series of downhole works. Downhole tractors have been used to convey tools in complex wellbores, however a very large tractive force is needed to carry more downhole tools to accomplish works with high efficiency. A novel serial active helical drive downhole tractor which has significantly improved performance compared with previous work is proposed. All previously reported helical drive downhole tractors need stators to balance the torque generated by the rotator. By contrast, the proposed serial downhole tractor does not need a stator; several rotator-driven units should only be connected to one another to achieve a tractive force multifold higher than that was previously reported. As a result, the length of a single unit is shortened, and the motion flexibility of the downhole tractor is increased. The major performance indicators, namely, gear ratio, velocity, and tractive force, are analyzed. Experimental results show that the maximum tractive force of a single-unit prototype with a length of 900 mm is 165.3 kg or 1620 N. The analysis and experimental results show that the proposed design has considerable potential for downhole works.
基金supported by the Science and Technology Innovation 2030-“New Generation Artificial Intelligence”Major Project(No.2021ZD0113604)China Agriculture Research System of MOF and MARA(No.CARS-23-D07)。
文摘Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet the needs of the operation.Aiming at the coupling multi-task in the intelligent production of vegetables in the open field,the task assignment method for multiple unmanned tractors based on consistency alliance is studied.Firstly,unmanned vegetable production in the open field is abstracted as a multi-task assignment model with constraints of task demand,task sequence,and the distance traveled by an unmanned tractor.The tight time constraints between associated tasks are transformed into time windows.Based on the driving distance of the unmanned tractor and the replacement cost of the tools,an expanded task cost function is innovatively established.The task assignment model of multiple unmanned tractors is optimized by the consensus based bundle algorithm(CBBA)with time windows.Experiments show that the method can effectively solve task conflict in unmanned production and optimize task allocation.A basic model is provided for the cooperative task of multiple unmanned tractors for vegetable production in the open field.
基金Supported by National Natural Science Foundation of China(51175269)Jiangsu Provincial Science and Technology Support Program(Agriculture)(BE2012384)
文摘An Electro-hydraulic loading system is designed based on a test-bed of tractor's hydraulic steering by-wire. To simulate the steering resistance driving tractor in many kinds of soils and roads,the loading force is controlled to make proportional and continuous variable by an electro-hydraulic proportional relief valve. A steering resistance loading test-bed is built to test three kinds of steering resistance including constant,step and sine style. Tire lateral resistance is also tested under different steering conditions. The result shows that the electro-hydraulic loading system has high stability and following performance. Besides,the system's steady state error is lower than 3. 1%,and it meets the test requirement of tractor's hydraulic steering by-wire.
文摘A novel data acquisition system was successfully integrated on-board the Massey Ferguson 3,000 series agricultural tractors for measuring tractor-implement performance. A commercial load cell was incorporated into the existing system for the needed tractor-implement performance, measurements. This system is capable of measuring, displaying and recording, in real-time, the tractor's theoretical travel speed, the actual travel speed, the engine speed, the fuel consumption rate, and the drawbar pull. Static calibration tests on various associated sensors for the required measurements show excellent linearity with correlation coefficients that are close to 1. The developed system was extensively and successfully field demonstrated for tractor-implement performance with offset disc harrows on dry, undisturbed loamy soils. Under these conditions, a ratio of tractor power to implement width is suggested. The data also show the existence of a linear relationship between fuel consumption per hectare and specific draught, for the 4 to 9 kN m^-1 range, which suggests the possibility of extending the American Society of Agricultural and Biological Engineers model of draught prediction to forecast fuel consumption. The configuration of the tractor-harrow combination, based on the measurement of the draught required under operational conditions, provides the manufacturers with a reliable indication of the recommended power required for each harrow model. With this type of information farmers can make decisions regarding selection of a suitable tractor-implement combination for their farms. As a consequence, there is improved tractor-harrow productivity and field efficiency.
基金The authors acknowledge the support of Project supported by recommend international advanced agricultural science and technology plan of Ministry of Agriculture of China (Grant No. 2010-Z18), and the National Natural Science Foundation of China (Grant No. 51275249).
文摘Based on an exact CAD model of hydro-mechanical continuously variable transmission (HMCVT) gearbox which can transmit 180 horsepower, virtual prototype of the HMCVT was built. Revolution speed of shafts, gears and clutches of the HMCVT were calibrated by using results obtained by theoretical calculation and test methods. The needed power and torques of both mechanical power input shaft and hydropower input shaft were calculated by simulation. Hydraulic power distributing ratio and power flow of the system was also studied. The analysis results showed that cycle power was produced inevitably when the output shaft speed of HMCVT change smoothly during mechanical and hydraulic working state HM1 to HM4, and the instantaneous maximum cycle power was 39.5%. Then the overall transmission efficiency of HMCVT was studied, and the maximum overall efficiency of the system was about 87%. The results of the studies gave references to select suited engine and variable displacement pump for the HMCVT, and to develop rational speed control strategies for the HMCVT by changing displacement ratio of variable displacement pump.
基金Project supported by the National Natural Science Foundation of China (No. 30270773)the Teaching and Research Award Program forOutstanding Young Teachers in Higher Education Institutions of MOE,Chinaand the Natural Science Foundation of Zhejia
文摘This research aims at using a dynamic model of tractor system to support navigation system design for an automati- cally guided agricultural tractor. This model, consisting of a bicycle model of the tractor system, has been implemented in the MATLAB environment and was developed based on a John Deere tractor. The simulation results from this MATLAB model was validated through field navigation tests. The accuracy of the trajectory estimation is strongly affected by the determination of the cornering stiffness of the tractor. In this simulation, the tractor cornering stiffness analysis was identified during simulation analysis using the MATLAB model based on the recorded trajectory data. The obtained data was used in simulation analyses for various navigation operations in the field of interest. The analysis on field validation test results indicated that the developed tractor system could accurately estimate wheel trajectories of a tractor system while operating in agricultural fields at various speeds. The results also indicated that the developed system could accurately determine tractor velocity and steering angle while the tractor operates in curved fields.
文摘Robot technology is a very promising technology for agricultural sector, but the existing industrial robot could not deliver the above-mentioned criteria. Industrial robot mainly uses high voltage electrical power, which is not available at field and outdoor operation. The only available and reliable power is a hydraulic from the tractor. The harvester robot consumes the hydraulic power from the tractor and at the same time the tractor can be used as a traveling device for the robot. This paper describes the study on the development of autonomous tractor for the oil palm harvester. The development took considerations on the design of the electro-hydraulic system and the control software for the robot structure to be flexible enough to operate in plantation environment.
基金design of the ITER transfer casks system(ITER International Team),ITA 23-01-CN
文摘The ITER (international thermonuclear experimental reactor) tractor is an in-cask remote handling equipment, its tilting and lifting mechanism is important for the tractor operated with forty-five-ton plug in front of the ports of Hot Cell and VV (vacuum vessel) successfully. In order to better analyse the movement of this mechanism and decide the key design parameters accurately, a mathematical model of 7-1ink complicated plane mechanism was built up, and the calculation of design and kinematics simulation were implemented. The established mathematical model was proved to be valid by comparing the calculated result with that of kinematics simulation. Finally, the structure analysis and the optimization of its key part, tilting and lifting frame, were performed to guarantee the frame's strength in bearing the heavy load of plug.
基金supported in part by the Independent Innovation Project of Agricultural Science and Technology of Jiangsu Province(CX(20)3068)Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project of Jiangsu Province(NJ2021-37)+1 种基金National Foreign Experts Program of China(G2021145010L)Science and Technology Project of Suzhou City(SNG2020039)。
文摘Due to the non-standardization and complexity of the farmland environment,it is always a huge challenge for tractors to achieve fully autonomy(work at Self-driving mode)all the time in agricultural industry.Whereas,when tractors work in the Tele-driving(or Remote driving)mode,the operators are prone to fatigue because they need to concentrate for long periods of time.In response to these,a dual-mode control strategy was proposed to integrate the advantages of both approaches,i.e.,by combing Self-driving at most of the time with Tele-driving under special(complex and hazardous)conditions through switching control method.First,the state switcher was proposed,which is used for smooth switching the driving modes according to different working states of a tractor.Then,the state switching control law and the corresponding subsystem tracking controllers were designed.Finally,the effectiveness and superiority of the dualmode control method were evaluated via actual experimental testing of a tractor whose results show that the proposed control method can switch smoothly,stably,and efficiently between the two driving modes automatically.The average control accuracy has been improved by 20%and 15%respectively,compared to the conventional Tele-driving control and Self-driving control with low-precision navigation.In conclusion,the proposed dualmode control method can not only satisfy the operation in the complex and changeable farmland environment,but also free drivers from high-intensity and fatiguing work.This provides a perfect application solution and theoretical support for the intelligentization of unmanned farm agricultural machinery with high safety and reliability.
基金Project supported by the World Academy of Science(TWAS)research grant 2018(Ref:18-121 RG/PHYS/AS I-FR3240303643)North South University(NSU),Bangladesh,internal research grant 2018-19&2019-20(approved by the members of BOT,NSU,Bangladesh)
文摘Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be considered as the one of Minkowski exactly at the interface. In contrast, the presence of loss inside matter, either in the half-immersed object or in the background, causes optical pushing of the object. Our analysis suggests that for half-immersed plasmonic or lossy dielectric, the transferred momentum of photon can mathematically be modeled as the type of Minkowski and also of Abraham. However, according to a final critical analysis, the idea of Abraham momentum transfer has been rejected. Hence,an obvious question arises: whence the Abraham momentum? It is demonstrated that though the transferred momentum to a half-immersed Mie object(lossy or lossless) can better be considered as the Minkowski momentum, Lorentz force analysis suggests that the momentum of a photon traveling through the continuous background, however, can be modeled as the type of Abraham. Finally, as an interesting sidewalk, a machine learning based system has been developed to predict the time-averaged force within a very short time avoiding time-consuming full wave simulation.