期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
LQTTrack:Multi-Object Tracking by Focusing on Low-Quality Targets Association
1
作者 Suya Li Ying Cao +2 位作者 Hengyi Ren Dongsheng Zhu Xin Xie 《Computers, Materials & Continua》 SCIE EI 2024年第10期1449-1470,共22页
Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowq... Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack). 展开更多
关键词 Low-quality targets association strategy feature fusion multi-object tracking tracking-by-detection
在线阅读 下载PDF
多目标跟踪中的数据关联技术综述 被引量:28
2
作者 龚轩 乐孜纯 +1 位作者 王慧 武玉坤 《计算机科学》 CSCD 北大核心 2020年第10期136-144,共9页
目标跟踪一直都是计算视觉领域研究的热点课题之一,作为计算视觉的基础学科,其应用已经渗透到各个领域,包括智能监控、智能人机交互、无人驾驶以及军事等方面。目标跟踪从跟踪对象的数量角度可分为单目标跟踪和多目标跟踪,其中单目标跟... 目标跟踪一直都是计算视觉领域研究的热点课题之一,作为计算视觉的基础学科,其应用已经渗透到各个领域,包括智能监控、智能人机交互、无人驾驶以及军事等方面。目标跟踪从跟踪对象的数量角度可分为单目标跟踪和多目标跟踪,其中单目标跟踪相对简单,除了需要解决与多目标跟踪共性的问题(如遮挡、形变等)外,单目标跟踪不需要考虑目标的数据关联问题。然而,在多目标跟踪系统中,场景更为复杂,跟踪目标的数量和类别往往是不确定的,因此数据关联在整个跟踪系统中就显得尤为重要。数据关联是多目标跟踪过程中的一个重要阶段,国内外很多学者甚至将多目标跟踪问题看成数据关联问题,试图从数据关联过程中寻求多目标跟踪研究方法。文中重点对多目标跟踪过程中的数据关联技术进行了综述,系统地介绍了多目标跟踪中的数据关联技术。首先,对目标跟踪,尤其是多目标跟踪进行了概述,并对数据关联的研究现状做了描述;其次,详细介绍了数据关联的概念及其需要解决的问题;然后,对各种数据关联技术进行了分析总结,包括传统的NNDA算法、JPDA算法、基于Tracking-By-Detecting的多目标跟踪框架的数据关联技术以及多目标多相机跟踪(Multi-Target Multi-Camera Tracking,MTMCT)的数据关联;最后,对未来多目标跟踪的数据关联技术的研究方向进行了展望。 展开更多
关键词 多目标跟踪 数据关联 多目标多相机跟踪 MTMCT tracking-by-detecting 单目标跟踪
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部