The large-aperture reflective cameras on the geostationary orbit are susceptible to significant temperature fluctuations due to the“Sun transit”effect.To address the shortcomings of existing thermal control measures...The large-aperture reflective cameras on the geostationary orbit are susceptible to significant temperature fluctuations due to the“Sun transit”effect.To address the shortcomings of existing thermal control measures using camera sunshades to suppress the“Sun transit”and the issue of excessively large solar avoidance angles determined solely by geometric relationships,a thermal control design method is proposed that involves adding multi-layer thermal protection at the secondary mirror position of the camera.The goal is to optimize the avoidance angle and enhance the camera’s tolerance to“Sun transit”.A heat balance and motion relationship between the avoidance angle and duration is established.Then,the minimum solar avoidance angle after adopting the multi-layer thermal protection design is calculated.This angle is compared with the one determined by geometric relationships,leading to the conclusion that this method can effectively enhance the camera’s tolerance to“Sun transit”.A heat dissipation scheme is proposed that involves a coupled north-south heat spreader design with low-temperature compensation for the internal heat source.The calculation results of the two avoidance angles are applied to the calculation of the heat dissipation area and low-temperature compensation power,achieving a closed-loop heat dissipation scheme.Puls,the superiority of the multi-layer thermal protection design method is demonstrated from the perspectives of heat dissipation area and low-temperature compensation power requirements.A comparative analysis of simulation analysis,thermal balance tests,and in-orbit temperature data further validates the effectiveness of this method.展开更多
The exploitation of oil resources has now extended to ultra-deep formations,with depths even exceeding 10,000 m.During drilling operations,the bottomhole temperature(BHT)can surpass 240℃.Under such high-temperature c...The exploitation of oil resources has now extended to ultra-deep formations,with depths even exceeding 10,000 m.During drilling operations,the bottomhole temperature(BHT)can surpass 240℃.Under such high-temperature conditions,measurement while drilling(MWD)instruments are highly likely to malfunction due to the inadequate temperature resistance of their electronic components.As a wellbore temperature control approach,the application of thermal insulated drill pipe(TIDP)has been proposed to manage the wellbore temperature in ultra-deep wells.This paper developed a temperature field model for ultra-deep wells by coupling the interactions of multiple factors on the wellbore temperature.For the first time,five distinct TIDP deployment methods were proposed,and their corresponding wellbo re temperature variation characte ristics were investigated,and the heat transfer laws of the ultra-deep wellbore-formation system were quantitatively elucidated.The results revealed that TIDP can effectively restrain the rapid rise in the temperature of the drilling fluid inside the drill string by reducing the heat flux of the drill string.Among the five deployment methods,the method of deploying TIDP from the bottomhole upwards exhibits the best performance.For a 12,000 m simulated well,when6000 m of TIDP are deployed from the bottomhole upwards,the BHT decreases by 52℃,while the outlet temperature increases by merely 1℃.This not only achieves the objective of wellbore temperature control but also keeps the temperature of the drilling fluid at the outlet of annulus at a relatively low level,thereby reducing the requirements for the heat exchange equipment on the ground.The novel findings of this study provide significant guidance for wellbore temperature control in ultra-deep and ultra-high-temperature wells.展开更多
The recovery and utilization of ubiquitous low-grade heat are crucial for mitigating the fossil energy crisis.However,uncontrolled spontaneous heat dissipation limits its practical application.Inspired by skeletal mus...The recovery and utilization of ubiquitous low-grade heat are crucial for mitigating the fossil energy crisis.However,uncontrolled spontaneous heat dissipation limits its practical application.Inspired by skeletal muscle thermogenesis,we develop a compressible wood phase change gel with mechano-controlled heat release by infiltrating xylitol gel into wood aerogel.The xylitol gel can store recovered low-grade heat for at least 1 month by leveraging its inherent energy barrier.The hierarchically aligned lamellar structure of wood aerogel facilitates mechanical adaptation,hydrogen bond formation,and energy dissipation between the wood aerogel and the xylitol gel,increasing the compressive strength and toughness of wood phase change gel fivefold compared to xylitol gel.This enhancement effect enables repetitive contact-separation motions between the wood phase change gel and the substrate during radial compression,overcoming the energy barrier and releasing approximately 178.6 J g−1 of heat.As a proof-of-concept,the wood phase change gel serves as the hot side in a thermoelectric generator,providing about 2.13 W m^(−2) of clean electricity by the controlled utilization of recovered solar heat.This study presents a sustainable method to achieve off-grid electricity generation through the controlled utilization of recovered low-grade heat.展开更多
To gain insight into the fine interfacial control mechanism exhibited by oxidant-coated Al powder to improve combustion performance,we prepared Al/AP and Al@AP composite fuels using ball milling and spray-drying techn...To gain insight into the fine interfacial control mechanism exhibited by oxidant-coated Al powder to improve combustion performance,we prepared Al/AP and Al@AP composite fuels using ball milling and spray-drying technology.The thermal reaction characteristics,AP decomposition behavior,and decomposition reaction pathways of Al/AP and Al@AP composite fuels were investigated using thermal analysis and Ab Initio Molecular Dynamics(AIMD)calculations.Under the influence of fine interfacial control,the low-temperature decomposition heat release peak of AP was delayed by 25.5℃,while the high-temperature decomposition peak was advanced by 36.2℃,leading to an increase in the decomposition heat release of AP from 410.7 J/g to 1068.7 J/g.Compared to the unclad structure,the apparent activation energy of AP in low-temperature decomposition increased,and slightly decreased during high-temperature decomposition in the Al@AP composite fuel.The physical model of AP decomposition shifted to the model with higher degrees of freedom and a faster diffusion rate,characterized by rapid bidirectional diffusion at the interface.Furthermore,due to fine interfacial control,the oxidation reaction pathway of Al has been altered,changing from the final products of AP decomposition(O_(2),Cl2,etc.)to the direct oxidation of AP decomposition intermediates(HClO,ClO_(2),etc.).This accelerated and strengthened the oxidation reaction process of Al.As a result of these performance improvements,the final combustion temperature of Al@AP in the Microcanonical Ensemble(NVE)system stabilized at 2370 K,which is significantly higher than 1400 K observed for Al/AP,indicating enhanced ignition and combustion performance.展开更多
Thermal controllers equipped with phase-change materials are widely used for maintaining the moderate temperatures of various electric devices used in spacecraft. Yet, the structures of amounts of thermal controllers ...Thermal controllers equipped with phase-change materials are widely used for maintaining the moderate temperatures of various electric devices used in spacecraft. Yet, the structures of amounts of thermal controllers add up to such a large value that restricts the employment of scientific devices due to the limit of rocket capacity. A lightweight structure of phase-change thermal controllers has been one of the main focuses of spacecraft design engineering. In this work, we design a lightweight phase-change thermal controller structure based on lattice cells. The structure is manufactured entirely with AlSi10 Mg by direct metal laser melting. The dimensions of the structure are 230 mm × 170 mm × 15 mm, and the mass is 190 g, which is 60% lighter than most traditional structures(500–600 g) with the same dimensions. The 3 D-printed structure can reduce the risk of leakage at soldering manufacture by a welding process. Whether the strength of the designed structure is sufficient is determined through mechanical analysis and experiments. Thermal test results show that the thermal capacity of the lattice-based thermal controller is increased by50% compared to that of traditional controllers with the same volume.展开更多
Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CP...Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.展开更多
Optical membrane mirrors are promising key components for future space telescopes. Due to their ultra-thin and high flexible properties, the surfaces of these membrane mirrors are susceptible to temperature variations...Optical membrane mirrors are promising key components for future space telescopes. Due to their ultra-thin and high flexible properties, the surfaces of these membrane mirrors are susceptible to temperature variations. Therefore adaptive shape control of the mirror is essential to maintain the surface precision and to ensure its working performance. However, researches on modeling and control of membrane mirrors under thermal loads are sparse in open literatures. A 0.2 m diameter scale model of a polyimide membrane mirror is developed in this study. Three Polyvinylidene fluoride(PVDF) patches are laminated on the non-reflective side of the membrane mirror to serve as in-plane actuators. A new mathematical model of the piezoelectric actuated membrane mirror in multiple fields,(i.e., thermal,mechanical, and electrical field) is established, with which dynamic and static behaviors of the mirror can be analyzed.A closed-loop membrane mirror shape control system is set up and a surface shape control method based on an influence function matrix of the mirror is then investigated. Several experiments including surface displacement tracking and thermal deformation alleviation are performed. The deviations range from 15 μm to 20 μm are eliminated within 0.1 s and the residual deformation is controlled to micron level, which demonstrates the effectiveness of the proposed membrane shape control strategy and shows a satisfactory real-time performance. The proposed research provides a technological support and instruction for shape control of optical membrane mirrors.展开更多
Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were...Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were investigated, and the sensitivity analysis was conducted to obtain the appropriate design values. The thermodynamic analysis and economics evaluation were performed to estimate the superiority of the thermally coupled designs over the base case. The proposed biodiesel production processes were simulated using the simulator Aspen Plus, and calculation results show that the exergy loss and economic cost in the two thermally coupled designs can be greatly reduced. It is found that the thermally coupled side-stripper reactive distillation design provides more economic benefits than the side-rectifier one. The dynamic performance of the thermally coupled side-stripper design was investigated and the results showed that the proposed control structure could effectively handle large feed disturbances.展开更多
Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However,...Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion-integration-differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also...The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.展开更多
A micro thermal control device with polyimide based micro louver was proposed.The device structure was designed,the actuation voltage was analyzed theoretically and fabrication process was described.The micro louver p...A micro thermal control device with polyimide based micro louver was proposed.The device structure was designed,the actuation voltage was analyzed theoretically and fabrication process was described.The micro louver prototype was fabricated using UV laser micromachining,electrochemistry etch and magnetron sputtering deposition technologies.The main parameters were tested and results were presented.展开更多
Thermal control coatings were fabricated by mixing of La1-xSrxMnO3(LSMO)powder and acrylic resin and brushed on Al alloy substrate.The powders of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 were prepared using sol-gel method.XR...Thermal control coatings were fabricated by mixing of La1-xSrxMnO3(LSMO)powder and acrylic resin and brushed on Al alloy substrate.The powders of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 were prepared using sol-gel method.XRD results reveal the phase structure of LSMO powders are perovskite.The transition temperature from metal to insulator of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 are 300 and 275 K,respectively.The emissivity evolution with temperature of the coatings was measured.For La0.7Sr0.3MnO3/acrylic resin coating,the emissivity increases from 0.56 to 0.88,and for La0.7Sr0.3MnO3/acrylic resin coating from 0.50 to 0.90.展开更多
This paper is devoted to investigate the flutter and thermal buckling properties of the functionally graded piezoelectric material(FGPM)plate in supersonic airflow,and the active flutter control is carried out under d...This paper is devoted to investigate the flutter and thermal buckling properties of the functionally graded piezoelectric material(FGPM)plate in supersonic airflow,and the active flutter control is carried out under different temperature fields.The piezoelectric material component of the FGPM plate has gradient changes along the thickness,such as piezoelectricity and dielectric coefficients.The supersonic piston theory is used to evaluate the aerodynamic pressure.Based on the first-order shear deformation theory and Hamilton’s principle with the assumed mode method,the equation of motion of the structural system is deduced.The effect of aerodynamic pressure on the frequency and damping ratio of the FGPM plate is analyzed.Moreover,the flutter and thermal buckling properties of the FGPM and pure metal plates are compared to show the superior aerothermoelastic properties of the FGPM plates.The influences of volume fraction exponent and temperature on the flutter and thermal buckling properties of the FGPM plate are also examined in detail.The LQR controller is adopted to achieve active flutter control.The simulation results show that the present control method can largely improve dynamic stability of the FGPM plate in supersonic airflow and high-temperature environment.展开更多
A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain p...A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.展开更多
The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature cont...The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.展开更多
In this study, we examined the thermal effects throughout the process of the placement of span-scale girder segments on a 6×110-m continuous steel box girder in the Hong Kong-Zhuhai-Macao Bridge. Firstly, when a ...In this study, we examined the thermal effects throughout the process of the placement of span-scale girder segments on a 6×110-m continuous steel box girder in the Hong Kong-Zhuhai-Macao Bridge. Firstly, when a span-scale girder segment is temporarily stored in the open air, temperature gradients will significantly increase the maximum reaction force on temporary supports and cause local buckling at the bottom of the girder segment. Secondly, due to the temperature difference of the girder segments before and after girth-welding, some residual thermal deflections will appear on the girder segments because the boundary conditions of the structure are changed by the girth-welding. Thirdly, the thermal expansion and thermal bending of girder segments will cause movement and rotation of bearings, which must be considered in setting bearings. We propose control measures for these problems based on finite element method simulation with field-measured temperatures. The local buckling during open-air storage can be avoided by reasonably determining the appropriate positions of temporary supports using analysis of overall and local stresses. The residual thermal deflections can be overcome by performing girth-welding during a period when the vertical temperature difference of the girder is within 1 °C, such as after 22:00. Some formulas are proposed to determine the pre-set distances for bearings, in which the movement and rotation of the bearings due to dead loads and thermal loads are considered. Finally, the feasibility of these control measures in the placement of span-scale girder segments on a real continuous girder was verified: no local buckling was observed during open-air storage;the residual thermal deflections after girth-welding were controlled within 5 mm and the residual pre-set distances of bearings when the whole continuous girder reached its design state were controlled within 20 mm.展开更多
To study the effects of perceived control on human thermal sensation and thermal comfort in heated environments,a psychological experiment was conducted.In total,24 subjects participated in an experiment.The experimen...To study the effects of perceived control on human thermal sensation and thermal comfort in heated environments,a psychological experiment was conducted.In total,24 subjects participated in an experiment.The experiment consisted of two cases in which the indoor temperature was set at 18℃ with different cold radiation temperatures.The experiment lasted for 120 min and was divided into three phases,adaptation,without perceived control and perceived control.In the second phase,the subjects were told in advance that the indoor temperature could not be adjusted.In the third phase,subjects were told that they could adjust the indoor temperature to meet their own thermal expectations,but the indoor temperature could not actually be changed.The results showed that the effect of perceived control on thermal sensation was related to the thermal expectation.For people with strong expectations for a neutral environment,perceived control improved their thermal sensation by satisfying their thermal expectations.For people with low thermal expectations,perceived control reduced their thermal tolerance to the environment,eventually leading to thermal discomfort.These new findings provide more supports for the importance of psychological effects and a reference for the personal control of heating temperatures.展开更多
A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM...A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components( RCHs) produced 1 W,3 W, 5 W,7W,and 10 W for simulating heat generation of electronic devices. At various heating power levels,the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also,a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control.展开更多
In this paper, the novel control structures of differential pressure thermally coupled reactive distillation process for methyl acetate hydrolysis were proposed. The RadFrac module of Aspen Plus was adopted in the ste...In this paper, the novel control structures of differential pressure thermally coupled reactive distillation process for methyl acetate hydrolysis were proposed. The RadFrac module of Aspen Plus was adopted in the steady-state simulation. Sensitive analysis was applied to find the stable intial value and provide a basis for the improved control structure design. The Aspen Dynamics software was adopted to study the process dynamic behaviors, and two novel control structures provided with feed ratio controllers and sensitive tray temperature controllers were proposed. The reflux ratio controllers were applied in the improved novel control structures. Both control structures abandoned the composition controllers that were replaced by simpler controllers with which the product purity could meet the specification requiring under a ± 20% disturbance to the total feed flowrate / MeAc composition.展开更多
Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent...Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.展开更多
基金supported by the Na⁃tional Key Research and Development Program of China(No.2021YFC2202102)。
文摘The large-aperture reflective cameras on the geostationary orbit are susceptible to significant temperature fluctuations due to the“Sun transit”effect.To address the shortcomings of existing thermal control measures using camera sunshades to suppress the“Sun transit”and the issue of excessively large solar avoidance angles determined solely by geometric relationships,a thermal control design method is proposed that involves adding multi-layer thermal protection at the secondary mirror position of the camera.The goal is to optimize the avoidance angle and enhance the camera’s tolerance to“Sun transit”.A heat balance and motion relationship between the avoidance angle and duration is established.Then,the minimum solar avoidance angle after adopting the multi-layer thermal protection design is calculated.This angle is compared with the one determined by geometric relationships,leading to the conclusion that this method can effectively enhance the camera’s tolerance to“Sun transit”.A heat dissipation scheme is proposed that involves a coupled north-south heat spreader design with low-temperature compensation for the internal heat source.The calculation results of the two avoidance angles are applied to the calculation of the heat dissipation area and low-temperature compensation power,achieving a closed-loop heat dissipation scheme.Puls,the superiority of the multi-layer thermal protection design method is demonstrated from the perspectives of heat dissipation area and low-temperature compensation power requirements.A comparative analysis of simulation analysis,thermal balance tests,and in-orbit temperature data further validates the effectiveness of this method.
基金supported by the National Natural Science Foundation of China(Grant No.U22B2072)Research Project of China Petroleum Science and Technology Innovation Fund(Grant No.2025DQ02-0144)。
文摘The exploitation of oil resources has now extended to ultra-deep formations,with depths even exceeding 10,000 m.During drilling operations,the bottomhole temperature(BHT)can surpass 240℃.Under such high-temperature conditions,measurement while drilling(MWD)instruments are highly likely to malfunction due to the inadequate temperature resistance of their electronic components.As a wellbore temperature control approach,the application of thermal insulated drill pipe(TIDP)has been proposed to manage the wellbore temperature in ultra-deep wells.This paper developed a temperature field model for ultra-deep wells by coupling the interactions of multiple factors on the wellbore temperature.For the first time,five distinct TIDP deployment methods were proposed,and their corresponding wellbo re temperature variation characte ristics were investigated,and the heat transfer laws of the ultra-deep wellbore-formation system were quantitatively elucidated.The results revealed that TIDP can effectively restrain the rapid rise in the temperature of the drilling fluid inside the drill string by reducing the heat flux of the drill string.Among the five deployment methods,the method of deploying TIDP from the bottomhole upwards exhibits the best performance.For a 12,000 m simulated well,when6000 m of TIDP are deployed from the bottomhole upwards,the BHT decreases by 52℃,while the outlet temperature increases by merely 1℃.This not only achieves the objective of wellbore temperature control but also keeps the temperature of the drilling fluid at the outlet of annulus at a relatively low level,thereby reducing the requirements for the heat exchange equipment on the ground.The novel findings of this study provide significant guidance for wellbore temperature control in ultra-deep and ultra-high-temperature wells.
基金supported by the National Key R&D Program of China (2023YFD2201403)the National Natural Science Foundation of China (Grant Nos. 32171693, 32201482)+1 种基金the Heilongjiang Natural Science Foundation Outstanding Youth project (Grant No. YQ2022C002)College Students'Innovative Entrepreneurial Training Plan Program (202410225338)
文摘The recovery and utilization of ubiquitous low-grade heat are crucial for mitigating the fossil energy crisis.However,uncontrolled spontaneous heat dissipation limits its practical application.Inspired by skeletal muscle thermogenesis,we develop a compressible wood phase change gel with mechano-controlled heat release by infiltrating xylitol gel into wood aerogel.The xylitol gel can store recovered low-grade heat for at least 1 month by leveraging its inherent energy barrier.The hierarchically aligned lamellar structure of wood aerogel facilitates mechanical adaptation,hydrogen bond formation,and energy dissipation between the wood aerogel and the xylitol gel,increasing the compressive strength and toughness of wood phase change gel fivefold compared to xylitol gel.This enhancement effect enables repetitive contact-separation motions between the wood phase change gel and the substrate during radial compression,overcoming the energy barrier and releasing approximately 178.6 J g−1 of heat.As a proof-of-concept,the wood phase change gel serves as the hot side in a thermoelectric generator,providing about 2.13 W m^(−2) of clean electricity by the controlled utilization of recovered solar heat.This study presents a sustainable method to achieve off-grid electricity generation through the controlled utilization of recovered low-grade heat.
基金co-supported by the National Natural Science Foundation of China(Nos.52176099 and 52306130)the Applied Basic Research Project of Changzhou City,China(No.CJ20235033)the High-Performance Computation Laboratory of Hefei and Changzhou University,China.
文摘To gain insight into the fine interfacial control mechanism exhibited by oxidant-coated Al powder to improve combustion performance,we prepared Al/AP and Al@AP composite fuels using ball milling and spray-drying technology.The thermal reaction characteristics,AP decomposition behavior,and decomposition reaction pathways of Al/AP and Al@AP composite fuels were investigated using thermal analysis and Ab Initio Molecular Dynamics(AIMD)calculations.Under the influence of fine interfacial control,the low-temperature decomposition heat release peak of AP was delayed by 25.5℃,while the high-temperature decomposition peak was advanced by 36.2℃,leading to an increase in the decomposition heat release of AP from 410.7 J/g to 1068.7 J/g.Compared to the unclad structure,the apparent activation energy of AP in low-temperature decomposition increased,and slightly decreased during high-temperature decomposition in the Al@AP composite fuel.The physical model of AP decomposition shifted to the model with higher degrees of freedom and a faster diffusion rate,characterized by rapid bidirectional diffusion at the interface.Furthermore,due to fine interfacial control,the oxidation reaction pathway of Al has been altered,changing from the final products of AP decomposition(O_(2),Cl2,etc.)to the direct oxidation of AP decomposition intermediates(HClO,ClO_(2),etc.).This accelerated and strengthened the oxidation reaction process of Al.As a result of these performance improvements,the final combustion temperature of Al@AP in the Microcanonical Ensemble(NVE)system stabilized at 2370 K,which is significantly higher than 1400 K observed for Al/AP,indicating enhanced ignition and combustion performance.
基金supports from Beijing Institute of Spacecraft System Engineering and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(Nos.2017QNRC001,2016QNRC001)
文摘Thermal controllers equipped with phase-change materials are widely used for maintaining the moderate temperatures of various electric devices used in spacecraft. Yet, the structures of amounts of thermal controllers add up to such a large value that restricts the employment of scientific devices due to the limit of rocket capacity. A lightweight structure of phase-change thermal controllers has been one of the main focuses of spacecraft design engineering. In this work, we design a lightweight phase-change thermal controller structure based on lattice cells. The structure is manufactured entirely with AlSi10 Mg by direct metal laser melting. The dimensions of the structure are 230 mm × 170 mm × 15 mm, and the mass is 190 g, which is 60% lighter than most traditional structures(500–600 g) with the same dimensions. The 3 D-printed structure can reduce the risk of leakage at soldering manufacture by a welding process. Whether the strength of the designed structure is sufficient is determined through mechanical analysis and experiments. Thermal test results show that the thermal capacity of the lattice-based thermal controller is increased by50% compared to that of traditional controllers with the same volume.
基金Project(51408184)supported by the National Natural Science Foundation of ChinaProject(E2017202136)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BSBE2017-05)supported by the Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology,ChinaProject(QG2018-3)supported by Hebei Provincial Department of Transportation,China
文摘Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.51175103)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS201301B)
文摘Optical membrane mirrors are promising key components for future space telescopes. Due to their ultra-thin and high flexible properties, the surfaces of these membrane mirrors are susceptible to temperature variations. Therefore adaptive shape control of the mirror is essential to maintain the surface precision and to ensure its working performance. However, researches on modeling and control of membrane mirrors under thermal loads are sparse in open literatures. A 0.2 m diameter scale model of a polyimide membrane mirror is developed in this study. Three Polyvinylidene fluoride(PVDF) patches are laminated on the non-reflective side of the membrane mirror to serve as in-plane actuators. A new mathematical model of the piezoelectric actuated membrane mirror in multiple fields,(i.e., thermal,mechanical, and electrical field) is established, with which dynamic and static behaviors of the mirror can be analyzed.A closed-loop membrane mirror shape control system is set up and a surface shape control method based on an influence function matrix of the mirror is then investigated. Several experiments including surface displacement tracking and thermal deformation alleviation are performed. The deviations range from 15 μm to 20 μm are eliminated within 0.1 s and the residual deformation is controlled to micron level, which demonstrates the effectiveness of the proposed membrane shape control strategy and shows a satisfactory real-time performance. The proposed research provides a technological support and instruction for shape control of optical membrane mirrors.
基金Financial supports of the National Natural Science Foundation of China(Grant:21276279 and Grant:21476261)the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.15CX06042A)
文摘Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were investigated, and the sensitivity analysis was conducted to obtain the appropriate design values. The thermodynamic analysis and economics evaluation were performed to estimate the superiority of the thermally coupled designs over the base case. The proposed biodiesel production processes were simulated using the simulator Aspen Plus, and calculation results show that the exergy loss and economic cost in the two thermally coupled designs can be greatly reduced. It is found that the thermally coupled side-stripper reactive distillation design provides more economic benefits than the side-rectifier one. The dynamic performance of the thermally coupled side-stripper design was investigated and the results showed that the proposed control structure could effectively handle large feed disturbances.
文摘Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion-integration-differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
基金Project supported by National Natural Science Foundation of China(No. 50675199)the Science and Technology Project of Zhejiang Province (No. 2006C11067), China
文摘The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.
文摘A micro thermal control device with polyimide based micro louver was proposed.The device structure was designed,the actuation voltage was analyzed theoretically and fabrication process was described.The micro louver prototype was fabricated using UV laser micromachining,electrochemistry etch and magnetron sputtering deposition technologies.The main parameters were tested and results were presented.
基金NSFC(51001039)National Basic Research Program of China(2007CB607602)+1 种基金Fundamental Research Funds for the Central Universities(HIT.NSRIF.2009030)Program of Excellent Teams of Harbin Institute of Technology
文摘Thermal control coatings were fabricated by mixing of La1-xSrxMnO3(LSMO)powder and acrylic resin and brushed on Al alloy substrate.The powders of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 were prepared using sol-gel method.XRD results reveal the phase structure of LSMO powders are perovskite.The transition temperature from metal to insulator of La0.7Sr0.3MnO3 and La0.8Sr0.2MnO3 are 300 and 275 K,respectively.The emissivity evolution with temperature of the coatings was measured.For La0.7Sr0.3MnO3/acrylic resin coating,the emissivity increases from 0.56 to 0.88,and for La0.7Sr0.3MnO3/acrylic resin coating from 0.50 to 0.90.
基金supported by the National Natural Science Foundation of China(Nos.11502159 and 11761131006)the Fundamental Research Funds for the Central Universities.
文摘This paper is devoted to investigate the flutter and thermal buckling properties of the functionally graded piezoelectric material(FGPM)plate in supersonic airflow,and the active flutter control is carried out under different temperature fields.The piezoelectric material component of the FGPM plate has gradient changes along the thickness,such as piezoelectricity and dielectric coefficients.The supersonic piston theory is used to evaluate the aerodynamic pressure.Based on the first-order shear deformation theory and Hamilton’s principle with the assumed mode method,the equation of motion of the structural system is deduced.The effect of aerodynamic pressure on the frequency and damping ratio of the FGPM plate is analyzed.Moreover,the flutter and thermal buckling properties of the FGPM and pure metal plates are compared to show the superior aerothermoelastic properties of the FGPM plates.The influences of volume fraction exponent and temperature on the flutter and thermal buckling properties of the FGPM plate are also examined in detail.The LQR controller is adopted to achieve active flutter control.The simulation results show that the present control method can largely improve dynamic stability of the FGPM plate in supersonic airflow and high-temperature environment.
文摘A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.
基金Project(61174132)supported by the National Natural Science Foundation of ChinaProject(2015zzts047)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20130162110067)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.
基金Project supported by the National Natural Science Foundation of China(Nos.51578496 and 51878603)the Zhejiang Provincial Natural Science Foundation of China(No.LZ16E080001)。
文摘In this study, we examined the thermal effects throughout the process of the placement of span-scale girder segments on a 6×110-m continuous steel box girder in the Hong Kong-Zhuhai-Macao Bridge. Firstly, when a span-scale girder segment is temporarily stored in the open air, temperature gradients will significantly increase the maximum reaction force on temporary supports and cause local buckling at the bottom of the girder segment. Secondly, due to the temperature difference of the girder segments before and after girth-welding, some residual thermal deflections will appear on the girder segments because the boundary conditions of the structure are changed by the girth-welding. Thirdly, the thermal expansion and thermal bending of girder segments will cause movement and rotation of bearings, which must be considered in setting bearings. We propose control measures for these problems based on finite element method simulation with field-measured temperatures. The local buckling during open-air storage can be avoided by reasonably determining the appropriate positions of temporary supports using analysis of overall and local stresses. The residual thermal deflections can be overcome by performing girth-welding during a period when the vertical temperature difference of the girder is within 1 °C, such as after 22:00. Some formulas are proposed to determine the pre-set distances for bearings, in which the movement and rotation of the bearings due to dead loads and thermal loads are considered. Finally, the feasibility of these control measures in the placement of span-scale girder segments on a real continuous girder was verified: no local buckling was observed during open-air storage;the residual thermal deflections after girth-welding were controlled within 5 mm and the residual pre-set distances of bearings when the whole continuous girder reached its design state were controlled within 20 mm.
基金Project(2018YFC0704500)supported by the National Key R&D Program of China during the 13th Five-Year Plan Period。
文摘To study the effects of perceived control on human thermal sensation and thermal comfort in heated environments,a psychological experiment was conducted.In total,24 subjects participated in an experiment.The experiment consisted of two cases in which the indoor temperature was set at 18℃ with different cold radiation temperatures.The experiment lasted for 120 min and was divided into three phases,adaptation,without perceived control and perceived control.In the second phase,the subjects were told in advance that the indoor temperature could not be adjusted.In the third phase,subjects were told that they could adjust the indoor temperature to meet their own thermal expectations,but the indoor temperature could not actually be changed.The results showed that the effect of perceived control on thermal sensation was related to the thermal expectation.For people with strong expectations for a neutral environment,perceived control improved their thermal sensation by satisfying their thermal expectations.For people with low thermal expectations,perceived control reduced their thermal tolerance to the environment,eventually leading to thermal discomfort.These new findings provide more supports for the importance of psychological effects and a reference for the personal control of heating temperatures.
文摘A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components( RCHs) produced 1 W,3 W, 5 W,7W,and 10 W for simulating heat generation of electronic devices. At various heating power levels,the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also,a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control.
基金supported financially by the Fundamental Research Funds for the Central Universities (Grant No.18CX02120A)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(Grant No. BS2014NJ010)the National Natural Science Foundation of China (Grant No. 21506255)
文摘In this paper, the novel control structures of differential pressure thermally coupled reactive distillation process for methyl acetate hydrolysis were proposed. The RadFrac module of Aspen Plus was adopted in the steady-state simulation. Sensitive analysis was applied to find the stable intial value and provide a basis for the improved control structure design. The Aspen Dynamics software was adopted to study the process dynamic behaviors, and two novel control structures provided with feed ratio controllers and sensitive tray temperature controllers were proposed. The reflux ratio controllers were applied in the improved novel control structures. Both control structures abandoned the composition controllers that were replaced by simpler controllers with which the product purity could meet the specification requiring under a ± 20% disturbance to the total feed flowrate / MeAc composition.
基金the financial support from the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021007)the National Nature Science Foundation of China(21903082 and 22273100)+2 种基金the Dalian Institute of Chemical Physics(DICP I202036,and I202218)the DNL Cooperation Fund,CAS(DNL202012)Liaoning Provincial Natural Science Foundation of China under grant 2022-MS-020。
文摘Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.