[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau...[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau damping,which is particularly important for storage rings operating with ultra-low emittance or atlow beam energy.[Purpose]To further increase the bunch length without additional hardware costs,the phasemodulation in a dual-RF system is considered.[Methods]In this paper,turn-by-turn simulations incorporating randomsynchrotron radiation excitation are conducted,and a brief analysis is presented to explain the bunch lengtheningmechanism.[Results]Simulation results reveal that the peak current can be further reduced,thereby mitigating IBSeffects and enhancing the Touschek lifetime.Although the energy spread increases,which tends to reduce thebrightness of higher-harmonic radiation from the undulator,the brightness of the fundamental harmonic can,in fact,beimproved.展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with pha...Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with phase gradient modulation can be used to achieve illusion optics,featuring the advantages of simple geometric structure and feasible implementation compared with the well-known transformation optics method.The underlying mechanism is the anomalous diffraction law caused by the phase gradient,which provides a theoretical basis for freely manipulating the propagation path of light.By considering a specific example,we will demonstrate that the phase gradient can transform spatial coordinates in real space into illusion space,thereby converting a plane in real space into a curved surface structure in illusion space to achieve the illusion effect.This approach provides a viable alternative to transformation optics for designing illusion devices.展开更多
Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flush...Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flushing,thereby reducing the antifouling capability of LIS.Herein,we reported a thermal-responsive lubricant infused surface(TLIS)based on composite phase change materials(CPCMs),exhibiting durable and efficient anti-scaling performance.During multicycle scalingdescaling test,the anti-scaling efficiencies of TLIS based on paraffin and vaseline can be increased to 91.4%±0.5% for first cycle and 85.3%±3.3% for sixth cycle.The paraffin acts as solid scaffolds for structural stability while the vaseline acts as liquid lubricants for anti-scaling enhancement.The universality of this surface can be revealed by suppressing various scales(e.g.,CaCO_(3),CaSO_(4),CaC_(2)O_(4),and MgCO_(3))and varying CPCMs types(e.g.,n-alkanes,ionic liquids,and fatty acids).Therefore,this study presents a promising strategy that enhances the durability of anti-scaling capability and potentially applys in heat exchange systems.展开更多
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctio...Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctional layered composite phase change materials(CPCMs)comprising alternating cellulose nanofiber/phase change capsule/sodium alginate(CNF/PCC/SA)layers and MXene/sodium alginate(MXene/SA)layers.The strong interfacial adhesion and controlled multilayer architecture enable the CPCM to achieve high electrical conductivity(up to 279.8 S/cm)and excellent EMI shielding effectiveness(up to 57.6 dB in the X-band).The layered structure enhances electromagnetic wave attenuation via multiple internal reflections and polarization losses,outperforming homogeneous composites.Moreover,the CPCMs exhibit superior light absorption(maximum nearly 100% for the optimized 5-layer structure)and efficient light-to-thermal conversion,achieving rapid temperature increases and uniform heat distribution under light irradiation.Additionally,the phase change capsules enable latent heat storage,ensuring thermal buffering and prolonged temperature regulation.This work provides novel insights into the rational design of multifunctional composites integrating wireless thermal management and EMI shielding,with promising applications in wearable electronics and smart thermal regulation.展开更多
The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behavior...The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behaviors and mechanical properties.The precipitation kinetics of the T1 phase and the microstructures in peak aging state were investigated through the differential scanning calorimetric(DSC)tests and electron microscopy observation.The results show that−196℃deformation produces a high dislocation density,which promotes the precipitation of the T1 phase and refines its sizes significantly.In addition,the grain boundary precipitates(GBPs)of−196℃-stretched samples are suppressed considerably due to the high dislocation density in the grain interiors,which increases the ductility.In comparison,the strength remains nearly constant.Thus,it is indicated that cryogenic forming has the potential to provide the shape and property control for the manufacture of critical components of aluminum alloys.展开更多
Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the o...Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.展开更多
This paper proposes a modified centralized shifted Rayleigh filter(MCSRF) algorithm for tracking boost phase of ballistic missile(BM) trajectory with a highly nonlinear dynamical model based on bearings-only.This ...This paper proposes a modified centralized shifted Rayleigh filter(MCSRF) algorithm for tracking boost phase of ballistic missile(BM) trajectory with a highly nonlinear dynamical model based on bearings-only.This paper contributes three folds.Firstly,the mathematical model of an MCSRF for multiple passive sensors is derived.Then,minimum entropy based onedimensional optimization search to adaptively adjust the probability of the different filters for real time state estimation is deployed.Finally,the unscented transform(UT) is introduced to resolve the asymmetric state estimation problem.Simulation results show that the proposed algorithm can consecutively track the BM precisely during the boost phase.In comparison with the unscented Kalman filter(UKF) algorithm,the proposed algorithm effectively reduces the tracking position and velocity root mean square(RMS) errors,which will make more sense for early precision interception.展开更多
A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o...A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.展开更多
Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this ...Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.展开更多
Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper ...Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).展开更多
X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However,duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam,...X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However,duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam, mechanical and background vibration, the actual accuracy will inevitably be degraded by these time-dependent fluctuations. Therefore,not only spatial position, but also temporal features of the speckle patterns need to be considered in order to maintain the superiority of the speckle-based methods. In this paper, we propose a parallel acquisition method with advantages of real time and high accuracy, which has potential applicability to dynamic samples imaging as well as on-line beam monitoring.Through simulations, we demonstrate that the proposed method can reduce the phase error caused by the fluctuations to1% at most compared with current speckle tracking methods. Meanwhile, it can keep the accuracy deterioration within0.03 nrad, making the high theoretical accuracy a reality. Also, we find that waveforms of the incident beam have a little impact on the phase retrieved and will not influence the actual accuracy, which relaxes the requirements for speckle-based experiments.展开更多
Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the ...Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the sampling interval is modified. The performance of the single model and multiple model estimator with uniform and variable sampling interval are evaluated and compared. It is shown by the simulation results that it is necessary to apply the adaptive sampling policy based on the multiple model method when the maneuvering targets are tracked by the phased array radar since saving radar resources is more important. The adaptive algorithms of variable sampling interval are better than the algorithms of variable model. The adaptive policy to determine the sampling interval based on multiple model are superior than those based on the single model filter, because IMM estimator can adapt to the maneuver more quickly and the prediction covariance of IMM is the more sensitive and more reliable index than residual to determine the sampling interval. With IMM based method, lower sampling interval is required for a certain accuracy.展开更多
In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The la...In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.展开更多
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol...Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.展开更多
In this paper, fast setpoint altitude tracking control for Hypersonic Flight Vehicle(HFV)satisfying Angle of Attack(AOA) constraint is studied with a two-loop structure controller, in the presence of parameter uncerta...In this paper, fast setpoint altitude tracking control for Hypersonic Flight Vehicle(HFV)satisfying Angle of Attack(AOA) constraint is studied with a two-loop structure controller, in the presence of parameter uncertainties and disturbances. For the outer loop, phase plane design is adopted for the simplified model under Bang-Bang controller to generate AOA command guaranteeing fast tracking performance. Modifications based on Feedback-Linearization(FL) technique are adopted to transform the phase trajectory into a sliding curve. Moreover, to resist mismatch between design model and actual model, Fast Exponential Reaching Law(FERL) is augmented with the baseline controller to maintain state on the sliding curve. The inner-loop controller is based on backstepping technique to track the AOA command generated by outer-loop controller. Barrier Lyapunov Function(BLF) design is employed to satisfy AOA requirement. Moreover, a novel auxiliary state is introduced to remove the restriction of BLF design on initial tracking errors. Dynamic Surface Control(DSC) is utilized to ease the computation burden. Rigorous stability proof is then given, and AOA is guaranteed to stay in predefined region theoretically. Simulations are conducted to verify the efficiency and superior performance of the proposed method.展开更多
Purpose: This study was undertaken to determine if portal-inflow bolus tracking outperforms aortic bolus tracking with respect to the image quality of contrast-enhanced portal venous-phase CT of the liver in patients ...Purpose: This study was undertaken to determine if portal-inflow bolus tracking outperforms aortic bolus tracking with respect to the image quality of contrast-enhanced portal venous-phase CT of the liver in patients without chronic liver damage. Materials and Methods: Contrast-enhanced CT of the liver was performed in 132 consecutive patients without chronic liver damage. Patients were prospectively assigned to three protocols: Protocol A—a portal venous-phase scan delay of 6 seconds after superior mesenteric venous (SMV) enhancement increased by 70 HU or 14 seconds after SMV enhancement was visually confirmed, and Protocols B and C—40 and 50 seconds, respectively, after abdominal aortic enhancement increased by 100 HU. Enhancement (ΔHU) of abdominal aorta, portal trunk, and liver parenchyma and diagnostic acceptability were assessed. Results: ΔHU of aorta was higher for protocol A than for protocols B and C (P P Conclusion: Portal-inflow bolus tracking did not outperform aortic tracking in terms of optimization of portal venous-phase CT in patients without chronic liver damage.展开更多
基金National Natural Science Foundation of China(12405168)The Fundamental Research Funds for the Central Universities,China(2024CDJXY004)。
文摘[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau damping,which is particularly important for storage rings operating with ultra-low emittance or atlow beam energy.[Purpose]To further increase the bunch length without additional hardware costs,the phasemodulation in a dual-RF system is considered.[Methods]In this paper,turn-by-turn simulations incorporating randomsynchrotron radiation excitation are conducted,and a brief analysis is presented to explain the bunch lengtheningmechanism.[Results]Simulation results reveal that the peak current can be further reduced,thereby mitigating IBSeffects and enhancing the Touschek lifetime.Although the energy spread increases,which tends to reduce thebrightness of higher-harmonic radiation from the undulator,the brightness of the fundamental harmonic can,in fact,beimproved.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos.12274313 and 62375234)the Gusu Leading Talent Plan for Scientific and Technological Innovation and Entrepreneurship (Grant No.ZXL2024400)。
文摘Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with phase gradient modulation can be used to achieve illusion optics,featuring the advantages of simple geometric structure and feasible implementation compared with the well-known transformation optics method.The underlying mechanism is the anomalous diffraction law caused by the phase gradient,which provides a theoretical basis for freely manipulating the propagation path of light.By considering a specific example,we will demonstrate that the phase gradient can transform spatial coordinates in real space into illusion space,thereby converting a plane in real space into a curved surface structure in illusion space to achieve the illusion effect.This approach provides a viable alternative to transformation optics for designing illusion devices.
基金supported by the Beijing Natural Science Foundation(No.JQ23008)the National Natural Science Foundation of China(Nos.22275203 and 22035008)Beijing Outstanding Young Scientist Program(No.JWZQ20240102014).
文摘Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flushing,thereby reducing the antifouling capability of LIS.Herein,we reported a thermal-responsive lubricant infused surface(TLIS)based on composite phase change materials(CPCMs),exhibiting durable and efficient anti-scaling performance.During multicycle scalingdescaling test,the anti-scaling efficiencies of TLIS based on paraffin and vaseline can be increased to 91.4%±0.5% for first cycle and 85.3%±3.3% for sixth cycle.The paraffin acts as solid scaffolds for structural stability while the vaseline acts as liquid lubricants for anti-scaling enhancement.The universality of this surface can be revealed by suppressing various scales(e.g.,CaCO_(3),CaSO_(4),CaC_(2)O_(4),and MgCO_(3))and varying CPCMs types(e.g.,n-alkanes,ionic liquids,and fatty acids).Therefore,this study presents a promising strategy that enhances the durability of anti-scaling capability and potentially applys in heat exchange systems.
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
基金the National Natural Science Foundation of China(No.52436003)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011985).
文摘Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctional layered composite phase change materials(CPCMs)comprising alternating cellulose nanofiber/phase change capsule/sodium alginate(CNF/PCC/SA)layers and MXene/sodium alginate(MXene/SA)layers.The strong interfacial adhesion and controlled multilayer architecture enable the CPCM to achieve high electrical conductivity(up to 279.8 S/cm)and excellent EMI shielding effectiveness(up to 57.6 dB in the X-band).The layered structure enhances electromagnetic wave attenuation via multiple internal reflections and polarization losses,outperforming homogeneous composites.Moreover,the CPCMs exhibit superior light absorption(maximum nearly 100% for the optimized 5-layer structure)and efficient light-to-thermal conversion,achieving rapid temperature increases and uniform heat distribution under light irradiation.Additionally,the phase change capsules enable latent heat storage,ensuring thermal buffering and prolonged temperature regulation.This work provides novel insights into the rational design of multifunctional composites integrating wireless thermal management and EMI shielding,with promising applications in wearable electronics and smart thermal regulation.
基金financially supported by the National Key Research and Development Program of China (No. 2019YFA0708801)the National Natural Science Foundation of China (No. 51875125)。
文摘The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behaviors and mechanical properties.The precipitation kinetics of the T1 phase and the microstructures in peak aging state were investigated through the differential scanning calorimetric(DSC)tests and electron microscopy observation.The results show that−196℃deformation produces a high dislocation density,which promotes the precipitation of the T1 phase and refines its sizes significantly.In addition,the grain boundary precipitates(GBPs)of−196℃-stretched samples are suppressed considerably due to the high dislocation density in the grain interiors,which increases the ductility.In comparison,the strength remains nearly constant.Thus,it is indicated that cryogenic forming has the potential to provide the shape and property control for the manufacture of critical components of aluminum alloys.
基金supported by the National Natural Science Foundation of China(No.22276219)the foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52121004)+1 种基金the major program Natural Science Foundation of Hunan Province of China(No.2021JC0001)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0063).
文摘Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.
基金supported by the Aerospace Science and Technology Innovation Foundation (CASC0202-3)
文摘This paper proposes a modified centralized shifted Rayleigh filter(MCSRF) algorithm for tracking boost phase of ballistic missile(BM) trajectory with a highly nonlinear dynamical model based on bearings-only.This paper contributes three folds.Firstly,the mathematical model of an MCSRF for multiple passive sensors is derived.Then,minimum entropy based onedimensional optimization search to adaptively adjust the probability of the different filters for real time state estimation is deployed.Finally,the unscented transform(UT) is introduced to resolve the asymmetric state estimation problem.Simulation results show that the proposed algorithm can consecutively track the BM precisely during the boost phase.In comparison with the unscented Kalman filter(UKF) algorithm,the proposed algorithm effectively reduces the tracking position and velocity root mean square(RMS) errors,which will make more sense for early precision interception.
基金supported by the Pre-research Fund (N0901-041)the Funding of Jiangsu Innovation Program for Graduate Education(CX09B 081Z CX10B 110Z)
文摘A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.
文摘Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.
文摘Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).
基金supported by the National Natural Science Foundation of China (Grant Nos. 11675253 and 11505278)。
文摘X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However,duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam, mechanical and background vibration, the actual accuracy will inevitably be degraded by these time-dependent fluctuations. Therefore,not only spatial position, but also temporal features of the speckle patterns need to be considered in order to maintain the superiority of the speckle-based methods. In this paper, we propose a parallel acquisition method with advantages of real time and high accuracy, which has potential applicability to dynamic samples imaging as well as on-line beam monitoring.Through simulations, we demonstrate that the proposed method can reduce the phase error caused by the fluctuations to1% at most compared with current speckle tracking methods. Meanwhile, it can keep the accuracy deterioration within0.03 nrad, making the high theoretical accuracy a reality. Also, we find that waveforms of the incident beam have a little impact on the phase retrieved and will not influence the actual accuracy, which relaxes the requirements for speckle-based experiments.
文摘Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the sampling interval is modified. The performance of the single model and multiple model estimator with uniform and variable sampling interval are evaluated and compared. It is shown by the simulation results that it is necessary to apply the adaptive sampling policy based on the multiple model method when the maneuvering targets are tracked by the phased array radar since saving radar resources is more important. The adaptive algorithms of variable sampling interval are better than the algorithms of variable model. The adaptive policy to determine the sampling interval based on multiple model are superior than those based on the single model filter, because IMM estimator can adapt to the maneuver more quickly and the prediction covariance of IMM is the more sensitive and more reliable index than residual to determine the sampling interval. With IMM based method, lower sampling interval is required for a certain accuracy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10872222 and 50921063)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110191110037)the Fundamental Research Funds for the Central Universities,China(Grant Nos.CDJXS11240011 and CDJXS10241103)
文摘In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.
基金sponsored by the Helmholtz Association,the China Scholarship Council(CSC)partially funded by the German Research Foundation,DFG(Project No.MA 5039/4-1)。
文摘Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.
基金supported by the National Natural Science Foundation of China (Nos. 61833016, 61873295, 61622308and 61933010)。
文摘In this paper, fast setpoint altitude tracking control for Hypersonic Flight Vehicle(HFV)satisfying Angle of Attack(AOA) constraint is studied with a two-loop structure controller, in the presence of parameter uncertainties and disturbances. For the outer loop, phase plane design is adopted for the simplified model under Bang-Bang controller to generate AOA command guaranteeing fast tracking performance. Modifications based on Feedback-Linearization(FL) technique are adopted to transform the phase trajectory into a sliding curve. Moreover, to resist mismatch between design model and actual model, Fast Exponential Reaching Law(FERL) is augmented with the baseline controller to maintain state on the sliding curve. The inner-loop controller is based on backstepping technique to track the AOA command generated by outer-loop controller. Barrier Lyapunov Function(BLF) design is employed to satisfy AOA requirement. Moreover, a novel auxiliary state is introduced to remove the restriction of BLF design on initial tracking errors. Dynamic Surface Control(DSC) is utilized to ease the computation burden. Rigorous stability proof is then given, and AOA is guaranteed to stay in predefined region theoretically. Simulations are conducted to verify the efficiency and superior performance of the proposed method.
文摘Purpose: This study was undertaken to determine if portal-inflow bolus tracking outperforms aortic bolus tracking with respect to the image quality of contrast-enhanced portal venous-phase CT of the liver in patients without chronic liver damage. Materials and Methods: Contrast-enhanced CT of the liver was performed in 132 consecutive patients without chronic liver damage. Patients were prospectively assigned to three protocols: Protocol A—a portal venous-phase scan delay of 6 seconds after superior mesenteric venous (SMV) enhancement increased by 70 HU or 14 seconds after SMV enhancement was visually confirmed, and Protocols B and C—40 and 50 seconds, respectively, after abdominal aortic enhancement increased by 100 HU. Enhancement (ΔHU) of abdominal aorta, portal trunk, and liver parenchyma and diagnostic acceptability were assessed. Results: ΔHU of aorta was higher for protocol A than for protocols B and C (P P Conclusion: Portal-inflow bolus tracking did not outperform aortic tracking in terms of optimization of portal venous-phase CT in patients without chronic liver damage.