In order to meet the urgent need of infrared search and track applications for accurate identification and positioning of infrared guidance aircraft,an active-detection mid-wave infrared search and track system(ADMWIR...In order to meet the urgent need of infrared search and track applications for accurate identification and positioning of infrared guidance aircraft,an active-detection mid-wave infrared search and track system(ADMWIRSTS)based on"cat-eye effect"was developed.The ADMWIRSTS mainly consists of both a light beam control subsystem and an infrared search and track subsystem.The light beam control subsystem uses an integrated opto-mechanical two-dimensional pointing mirror to realize the control function of the azimuth and pitch directions of the system,which can cover the whole airspace range of 360°×90°.The infrared search and track subsystem uses two mid-wave infrared cooled 640×512 focal plane detectors for co-aperture beam expanding,infrared and illumination laser beam combining,infrared search,and two-stage track opto-mechanical design.In this work,the system integration design and structural finite-element analysis were conducted,the search imaging and two-stage track imaging for external scenes were performed,and the active-detection technologies were experimentally verified in the laboratory.The experimental investigation results show that the system can realize the infrared search and track imaging,and the accurate identification and positioning of the mid-wave infrared guidance,or infrared detection system through the echo of the illumination laser.The aforementioned work has important technical significance and practical application value for the development of compactly-integrated high-precision infrared search and track,and laser suppression system,and has broad application prospects in the protection of equipment,assets and infrastructures.展开更多
Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynam...Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track.展开更多
Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the ...Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the mortar layer and the track slab. Based on the theory of viscoelasticity and the analytical method of the time hardening law(THL), the viscoelastic deformation behavior of CA mortar was studied. Using ABAQUS, we established a solid model of China railway track system(CRTS) Ⅰ prefabricated slab track, with CA mortar at different initial Young’s moduli under cyclic loading corresponding to the influence of actual train loads. The results reveal that the fitted parameters of the THL for CA mortar are suitable for describing its viscoelastic deformation. As the initial Young’s modulus increases, the strain difference before and after cyclic loading gradually decreases, and the displacement difference increases from 0.2 mm to 0.6 mm. The deformation mainly occurs at the end of a mortar layer with longitudinal distribution of about 2.5 times the fasteners’ spacing. It follows that the viscoelastic performance of CA mortar is one of the most important reasons that cause debonding underneath the track slab. Therefore, we suggest that the adverse effects of viscoelastic behavior of CA mortar should be considered when researching such deformation and damage.展开更多
This paper describes the required testing and approval procedures of new track systems operated in Europe. To begin with, test methods and performance specifications according to European Standard (EN) are outlined....This paper describes the required testing and approval procedures of new track systems operated in Europe. To begin with, test methods and performance specifications according to European Standard (EN) are outlined. These include the repeated loading test, the determination of the static and dynamic stiffness of rail pads, clamping force and longitudinal rail resistance. The fact that labor tests are unable to simulate all the conditions in situ shows that these labor tests are not sufficient for the evaluation of the long term behaviour of a new track system: a test track of sufficient length must be constructed and exposed to traffic loads. In Europe to be accredited as a new system, a new slab track system must have a trial time of more than two years, during which the features of the whole system can be recognized. In the second part of this paper, the experience of the Institute of Road, Railway and Airfield Construction of TUM concerning the measuring methods of slab track systems carrying traffic are outlined. Also the approval procedure of the new slab tracks in Germany is discussed.展开更多
The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment e...The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment element of the slab track was put forward. The spatial vibration equation set of the high-speed train and slab track system was then established on the basis of the principle of total potential energy with stationary value in elastic system dynamics and the rule of "set-in-right-position" for formulating system matrices. The equation set was solved by the Wilson-θ direct integration method. The contents mentioned above constitute the analysis theory of spatial vibration of high-speed train and slab track system. The theory was then verified by the high-speed running experiment carried out on the slab track in the Qinghuangdao-Shenyang passenger transport line. The results show that the calculated results agree well with the measured rcsults, such as the calculated lateral and vertical rail displacements are 0.82 mm and 0.9 mm and the measured ones 0.75 mm and 0.93 mm, respectively; the calculated lateral and vertical wheel-rail forces are 8.9 kN and 102.3 kN and the measured ones 8.6 kN and 80.2 kN, respectively. The interpolation method, that is, the lateral finite strip and slab segment element, for slab deformation proposed is of simplification and applicability compared with the traditional plate element method. All of these demonstrate the reliability of the theory proposed.展开更多
By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibra...By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.展开更多
Equipment for deep sea mining has risen from a position of virtual non-existence to a major industrial significance and in deep sea bed mining, the miner is the key equipment of the whole system that charges with the ...Equipment for deep sea mining has risen from a position of virtual non-existence to a major industrial significance and in deep sea bed mining, the miner is the key equipment of the whole system that charges with the most complex and dangerous task.Evaluation of trafficability for tracked vehicles for deep sea mining is essential. Rare earth elements(REEs) are used in a wide range of modern applications. These applications are highly specific and substitutes are inferior or unknown. One possible source of the REE could be the poly-metallic nodule, at present explored in the tropical part of the Pacific Ocean. In developing miners of high performance, dynamic behaviour should be investigated under various traveling conditions. The mechanics of tracked vehicles is of continuing interest to organizations and agencies that specify design and operate tracked vehicles. Most works done are on the complete track vehicle system but in this work the research activity is aimed only at the track system with the basic aim of optimizing the track system design so that it can be manufactured by using the minimum resources. Equations and models are developed for the track system of a miner during steering motion. These equations and models could further be used for design optimization of the track system.展开更多
CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bri...CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bridge system and CRTS-II track system form a complex nonlinear system.To investigate the seismic response of high speed railway(HSR)simply supported bridge-track system,nonlinear models of three-span simply supported bridge with piers of different height and CRTS-II slab ballastless track system are established.By seismic analysis,it is found that shear alveolar in CRTS-II track system is more prone to be damaged than bridge components,such as piers,girders and bearings.The result shows that the inconsistent displacement of bridge girders is the main cause of the CRTS-II track system’s damage.Then the rotational friction damper(RFD)is adopted,which utilizes the device’s rotation and friction to dissipate seismic energy.The hysteretic behavior of RFD is studied by numerical and experimental methods.Results prove that RFD can provide good hysteretic energy dissipation ability with stable performance.Furthermore,the analysis of RFD’s influence on seismic response of HSR bridge-track system shows that RFD with larger sliding force is more effective in controlling excessive inconsistent displacement where RFD is installed,though response of other bridge spans could slightly deteriorated.展开更多
In recent years, with the development of socialist market economy is gradually perfect, the endowment insurance system gradually affects people's daily life, the old-age insurance benefits of the "dual track" opera...In recent years, with the development of socialist market economy is gradually perfect, the endowment insurance system gradually affects people's daily life, the old-age insurance benefits of the "dual track" operation of the drawbacks caused by more and more people's attention, so the old-age insurance system reform, not only is the national endowment for the special requirements of self. It is the realization of China's social security reform priority among priorities. Based on the endowment insurance system of endowment insurance system reform, the interpretation of the resistance, found that at present our country how to deal with the problems of merger reform, discuss how to better realize the merger of the pension insurance system.展开更多
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
BACKGROUND The early acquisition of skills required to perform hemostasis during endoscopy may be hindered by the lack of tools that allow assessments of the operator’s viewpoint.Understanding the operator’s viewpoi...BACKGROUND The early acquisition of skills required to perform hemostasis during endoscopy may be hindered by the lack of tools that allow assessments of the operator’s viewpoint.Understanding the operator’s viewpoint may facilitate the skills.AIM To evaluate the effects of a training system using operator gaze patterns during gastric endoscopic submucosal dissection(ESD)on hemostasis.METHODS An eye-tracking system was developed to record the operator’s viewpoints during gastric ESD,displaying the viewpoint as a circle.In phase 1,videos of three trainees’viewpoints were recorded.After reviewing these,trainees were recorded again in phase 2.The videos from both phases were retrospectively reviewed,and short clips were created to evaluate the hemostasis skills.Outcome measures included the time to recognize the bleeding point,the time to complete hemostasis,and the number of coagulation attempts.RESULTS Eight cases treated with ESD were reviewed,and 10 video clips of hemostasis were created.The time required to recognize the bleeding point during phase 2 was significantly shorter than that during phase 1(8.3±4.1 seconds vs 23.1±19.2 seconds;P=0.049).The time required to complete hemostasis during phase 1 and that during phase 2 were not significantly different(15.4±6.8 seconds vs 31.9±21.7 seconds;P=0.056).Significantly fewer coagulation attempts were performed during phase 2(1.8±0.7 vs 3.2±1.0;P=0.004).CONCLUSION Short-term training did not reduce hemostasis completion time but significantly improved bleeding point recognition and reduced coagulation attempts.Learning from the operator’s viewpoint can facilitate acquiring hemostasis skills during ESD.展开更多
For a large-scale dynamic system,the efficiency of computation becomes a vital work sometimes in engineering practices.As a layered structural system,ballastless track and substructure occupy most part of the degrees ...For a large-scale dynamic system,the efficiency of computation becomes a vital work sometimes in engineering practices.As a layered structural system,ballastless track and substructure occupy most part of the degrees of freedom of the whole system.It is,therefore,rather important to optimize the structural models in dynamic equation formulations.In this work,a three-dimensional and coupled model for multi-rigid-body of train and finite elements of track and substructures is pre-sented by multi-scale assemble and matrix reassemble method.The matrix reassembling tactic is based on the multi-scale assemble method,through which the finite element matrix bandwidth is greatly narrowed,and the Cholesky factorization,iterative and multi-time-step solution have been introduced to efficiently obtain the train,track and substructure responses.The subgrade and its subsoil works as a typical substructural system,and comparisons with the previous model without matrix reassembling,SIMPACK and ABAQUS have been conducted to fully validate the efficiency and accuracy of this train-track-subgrade dynamic interaction model.展开更多
This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control s...This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung...In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung-mass subsystem(regarding ride comfort)and an unsprung-mass subsystem(regarding road holding),which correspond to two prescribed performance tracking problems.Subsequently,an integrated control law is designed by introducing the unsprung-mass sliding surface into the control of the sprung-mass one.To reduce chattering and stabilize the subsystems,a prescribed-time extended disturbance observer(PT-EDO)is designed,achieving the time-varying switching gain RDSMC(TVSG-RDSMC).Numerical simulations imply that the proposed TVSG-RDSMC can effectively improve ride comfort and road holding with a significantly reduced chattering.展开更多
Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrati...Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrations are not well understood.To clarify the vibration transfer function and its characteristics,four basic input vectors are defined,and an analytical method is proposed.The vibration transfer functions of the vehicle system are solved,and their spatial coherence is analyzed.The results show that there are two spatial scales and four coherent modes in the vehicle system.The track irregularity wavelengths are combined with two spatial scales to alter the proportions of basic input vectors and then show the characteristics of spatial coherence.Four coherent modes are involved in wheel-rail force and primary suspension force;two coherent modes are involved in bogie vertical motion;and their dominant modes vary with the input frequency.On the other hand,the coherent modes involved in the bogie pitching motion and vehicle body motion are single and fixed over the whole range of frequency.This study presents an analytical method for the rapid solution of dynamic responses in vehicle systems and systematically analyzes the coherence behavior of vibration transfer functions with respect to tracking irregularity wavelengths.展开更多
An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based o...An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based on the Takagi-Sugeno Fuzzy Descriptor Model(T-SFDM),a nonlinear discrete-time descriptor system is represented as several linear fuzzy subsystems,which facilitates the linear P-D feedback technique and streamlines the fuzzy controller design process.Leveraging the P-D feedback fuzzy controller,the closed-loop T-SFDM can be transformed into a standard system that guarantees non-impulsiveness and causality for the nonlinear discrete-time descriptor system.In view of the disturbance problems,a passive performance constraint is incorporated into the fuzzy tracking synthesis to achieve dissipativity of disturbance energy.To achieve a better balance between state and control responses,the H2 performance requirement is considered and a minimization constraint is applied to optimize the H2 index.It is observed that there is a lack of research focusing on both disturbance and control input issues in nonlinear descriptor systems.Extending the Lyapunov theory,a stability analysis method is proposed for the tracking purpose with the combination of the free-weighting matrix to relax the analysis process while complying multiple performance constraints.Finally,two simulation examples are presented to demonstrate the feasibility and applicability of the proposed approach in practical control scenarios for nonlinear descriptor systems.展开更多
Magnetic tracking technologies have a promising application in detecting the real-time position andattitude of a capsule endoscope.However,most of them need to measure the magnetic moment of a permanentmagnet(PM)embed...Magnetic tracking technologies have a promising application in detecting the real-time position andattitude of a capsule endoscope.However,most of them need to measure the magnetic moment of a permanentmagnet(PM)embedded in the capsule accurately in advance,which can cause inconvenience to practical application.To solve this problem,this paper proposes a magnetic tracking system with the capability of measuring themagnetic moment of the PM automatically.The system is constructed based on a 4×4 magnetic sensor array,whose sensing data is analyzed to determine the magnetic moment by referring to a magnetic dipole model.Withthe determined magnetic moment,a method of fusing the linear calculation and Levenberg-Marquardt algorithmsis proposed to determine the 3D position and 2D attitude of the PM.The experiments verified that the proposedsystem can achieve localization errors of 0.48 mm,0.42 mm,and 0.83 mm and orientation errors of 0.66◦,0.64◦,and 0.87◦for a PM(∅10 mm×10 mm)at vertical heights of 5 cm,10 cm,and 15 cm from the magnetic sensorarray,respectively.展开更多
This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
基金Supported by the Fundamental Scientific Research Plan of China(JCKY2021130B033)。
文摘In order to meet the urgent need of infrared search and track applications for accurate identification and positioning of infrared guidance aircraft,an active-detection mid-wave infrared search and track system(ADMWIRSTS)based on"cat-eye effect"was developed.The ADMWIRSTS mainly consists of both a light beam control subsystem and an infrared search and track subsystem.The light beam control subsystem uses an integrated opto-mechanical two-dimensional pointing mirror to realize the control function of the azimuth and pitch directions of the system,which can cover the whole airspace range of 360°×90°.The infrared search and track subsystem uses two mid-wave infrared cooled 640×512 focal plane detectors for co-aperture beam expanding,infrared and illumination laser beam combining,infrared search,and two-stage track opto-mechanical design.In this work,the system integration design and structural finite-element analysis were conducted,the search imaging and two-stage track imaging for external scenes were performed,and the active-detection technologies were experimentally verified in the laboratory.The experimental investigation results show that the system can realize the infrared search and track imaging,and the accurate identification and positioning of the mid-wave infrared guidance,or infrared detection system through the echo of the illumination laser.The aforementioned work has important technical significance and practical application value for the development of compactly-integrated high-precision infrared search and track,and laser suppression system,and has broad application prospects in the protection of equipment,assets and infrastructures.
基金supported by National Key R&D Program of China[Grant No.2022YFB2603400]R&D Project of China State Railway Group Corporation Limited[Grant No.P2021G053]R&D Project of China Academy of Railway Science Corporation Limited[Grant No.2023YJ200].
文摘Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track.
基金Project supported by the National Natural Science Foundation of China(No.51578472)。
文摘Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the mortar layer and the track slab. Based on the theory of viscoelasticity and the analytical method of the time hardening law(THL), the viscoelastic deformation behavior of CA mortar was studied. Using ABAQUS, we established a solid model of China railway track system(CRTS) Ⅰ prefabricated slab track, with CA mortar at different initial Young’s moduli under cyclic loading corresponding to the influence of actual train loads. The results reveal that the fitted parameters of the THL for CA mortar are suitable for describing its viscoelastic deformation. As the initial Young’s modulus increases, the strain difference before and after cyclic loading gradually decreases, and the displacement difference increases from 0.2 mm to 0.6 mm. The deformation mainly occurs at the end of a mortar layer with longitudinal distribution of about 2.5 times the fasteners’ spacing. It follows that the viscoelastic performance of CA mortar is one of the most important reasons that cause debonding underneath the track slab. Therefore, we suggest that the adverse effects of viscoelastic behavior of CA mortar should be considered when researching such deformation and damage.
文摘This paper describes the required testing and approval procedures of new track systems operated in Europe. To begin with, test methods and performance specifications according to European Standard (EN) are outlined. These include the repeated loading test, the determination of the static and dynamic stiffness of rail pads, clamping force and longitudinal rail resistance. The fact that labor tests are unable to simulate all the conditions in situ shows that these labor tests are not sufficient for the evaluation of the long term behaviour of a new track system: a test track of sufficient length must be constructed and exposed to traffic loads. In Europe to be accredited as a new system, a new slab track system must have a trial time of more than two years, during which the features of the whole system can be recognized. In the second part of this paper, the experience of the Institute of Road, Railway and Airfield Construction of TUM concerning the measuring methods of slab track systems carrying traffic are outlined. Also the approval procedure of the new slab tracks in Germany is discussed.
基金Project(2007CB714706) supported by the National Basic Research Program of ChinaProject (50678176) supported by the National Natural Science Foundation of ChinaProject(NCET-07-0866) supported by the Program for New Century Excellent Talents in University
文摘The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment element of the slab track was put forward. The spatial vibration equation set of the high-speed train and slab track system was then established on the basis of the principle of total potential energy with stationary value in elastic system dynamics and the rule of "set-in-right-position" for formulating system matrices. The equation set was solved by the Wilson-θ direct integration method. The contents mentioned above constitute the analysis theory of spatial vibration of high-speed train and slab track system. The theory was then verified by the high-speed running experiment carried out on the slab track in the Qinghuangdao-Shenyang passenger transport line. The results show that the calculated results agree well with the measured rcsults, such as the calculated lateral and vertical rail displacements are 0.82 mm and 0.9 mm and the measured ones 0.75 mm and 0.93 mm, respectively; the calculated lateral and vertical wheel-rail forces are 8.9 kN and 102.3 kN and the measured ones 8.6 kN and 80.2 kN, respectively. The interpolation method, that is, the lateral finite strip and slab segment element, for slab deformation proposed is of simplification and applicability compared with the traditional plate element method. All of these demonstrate the reliability of the theory proposed.
基金Project (2007CB714706) supported by the Major State Basic Research and Development Program of ChinaProject (50678176) supported by the National Natural Science Foundation of ChinaProject (NCET-07-0866) supported by the New Century Excellent Talents in University
文摘By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.
基金Project(2012AA091201)supported by the National High-tech Research&Development Program of China
文摘Equipment for deep sea mining has risen from a position of virtual non-existence to a major industrial significance and in deep sea bed mining, the miner is the key equipment of the whole system that charges with the most complex and dangerous task.Evaluation of trafficability for tracked vehicles for deep sea mining is essential. Rare earth elements(REEs) are used in a wide range of modern applications. These applications are highly specific and substitutes are inferior or unknown. One possible source of the REE could be the poly-metallic nodule, at present explored in the tropical part of the Pacific Ocean. In developing miners of high performance, dynamic behaviour should be investigated under various traveling conditions. The mechanics of tracked vehicles is of continuing interest to organizations and agencies that specify design and operate tracked vehicles. Most works done are on the complete track vehicle system but in this work the research activity is aimed only at the track system with the basic aim of optimizing the track system design so that it can be manufactured by using the minimum resources. Equations and models are developed for the track system of a miner during steering motion. These equations and models could further be used for design optimization of the track system.
基金The authors are grateful for the financial support from the Fundamental Research Funds for the Central Universities of Central South University(Project No.502221804)the National Natural Science Foundation of China(Project Nos.51878674,51878563)+1 种基金the Foundation for Key Youth Scholars in Hunan Province(Project No.150220077)the Project of Yuying Plan in Central South University(Project No.502034002).Any opinions,findings,and conclusions or recommendations expressed in this paper are those of the authors.
文摘CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bridge system and CRTS-II track system form a complex nonlinear system.To investigate the seismic response of high speed railway(HSR)simply supported bridge-track system,nonlinear models of three-span simply supported bridge with piers of different height and CRTS-II slab ballastless track system are established.By seismic analysis,it is found that shear alveolar in CRTS-II track system is more prone to be damaged than bridge components,such as piers,girders and bearings.The result shows that the inconsistent displacement of bridge girders is the main cause of the CRTS-II track system’s damage.Then the rotational friction damper(RFD)is adopted,which utilizes the device’s rotation and friction to dissipate seismic energy.The hysteretic behavior of RFD is studied by numerical and experimental methods.Results prove that RFD can provide good hysteretic energy dissipation ability with stable performance.Furthermore,the analysis of RFD’s influence on seismic response of HSR bridge-track system shows that RFD with larger sliding force is more effective in controlling excessive inconsistent displacement where RFD is installed,though response of other bridge spans could slightly deteriorated.
文摘In recent years, with the development of socialist market economy is gradually perfect, the endowment insurance system gradually affects people's daily life, the old-age insurance benefits of the "dual track" operation of the drawbacks caused by more and more people's attention, so the old-age insurance system reform, not only is the national endowment for the special requirements of self. It is the realization of China's social security reform priority among priorities. Based on the endowment insurance system of endowment insurance system reform, the interpretation of the resistance, found that at present our country how to deal with the problems of merger reform, discuss how to better realize the merger of the pension insurance system.
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
基金Supported by the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research,No.23K11902.
文摘BACKGROUND The early acquisition of skills required to perform hemostasis during endoscopy may be hindered by the lack of tools that allow assessments of the operator’s viewpoint.Understanding the operator’s viewpoint may facilitate the skills.AIM To evaluate the effects of a training system using operator gaze patterns during gastric endoscopic submucosal dissection(ESD)on hemostasis.METHODS An eye-tracking system was developed to record the operator’s viewpoints during gastric ESD,displaying the viewpoint as a circle.In phase 1,videos of three trainees’viewpoints were recorded.After reviewing these,trainees were recorded again in phase 2.The videos from both phases were retrospectively reviewed,and short clips were created to evaluate the hemostasis skills.Outcome measures included the time to recognize the bleeding point,the time to complete hemostasis,and the number of coagulation attempts.RESULTS Eight cases treated with ESD were reviewed,and 10 video clips of hemostasis were created.The time required to recognize the bleeding point during phase 2 was significantly shorter than that during phase 1(8.3±4.1 seconds vs 23.1±19.2 seconds;P=0.049).The time required to complete hemostasis during phase 1 and that during phase 2 were not significantly different(15.4±6.8 seconds vs 31.9±21.7 seconds;P=0.056).Significantly fewer coagulation attempts were performed during phase 2(1.8±0.7 vs 3.2±1.0;P=0.004).CONCLUSION Short-term training did not reduce hemostasis completion time but significantly improved bleeding point recognition and reduced coagulation attempts.Learning from the operator’s viewpoint can facilitate acquiring hemostasis skills during ESD.
基金supported by the National Natural Science Foundation of China(Grant Nos.52378468)Science and Technology Research and Development Program Project of China railway group limited(Major Special Project,No.2022-Major-14,2021-Special-08,2021-Major-02)+3 种基金Young Elite Scientists Sponsorship Program by CAST(2020-2022QNRC002)Central South University Innovation-Driven Research Programme(2023CXQD073)the National Natural Science Foundation of Hunan Province(Grant Nos.2022JJ20071 and 2021JJ30850)National Key R&D Program‘Transportation Infrastructure’‘Reveal the list and take command’project(2022YFB2603301).
文摘For a large-scale dynamic system,the efficiency of computation becomes a vital work sometimes in engineering practices.As a layered structural system,ballastless track and substructure occupy most part of the degrees of freedom of the whole system.It is,therefore,rather important to optimize the structural models in dynamic equation formulations.In this work,a three-dimensional and coupled model for multi-rigid-body of train and finite elements of track and substructures is pre-sented by multi-scale assemble and matrix reassemble method.The matrix reassembling tactic is based on the multi-scale assemble method,through which the finite element matrix bandwidth is greatly narrowed,and the Cholesky factorization,iterative and multi-time-step solution have been introduced to efficiently obtain the train,track and substructure responses.The subgrade and its subsoil works as a typical substructural system,and comparisons with the previous model without matrix reassembling,SIMPACK and ABAQUS have been conducted to fully validate the efficiency and accuracy of this train-track-subgrade dynamic interaction model.
文摘This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
基金supported by the National Natural Science Foundation of China(No.62173125).
文摘In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung-mass subsystem(regarding ride comfort)and an unsprung-mass subsystem(regarding road holding),which correspond to two prescribed performance tracking problems.Subsequently,an integrated control law is designed by introducing the unsprung-mass sliding surface into the control of the sprung-mass one.To reduce chattering and stabilize the subsystems,a prescribed-time extended disturbance observer(PT-EDO)is designed,achieving the time-varying switching gain RDSMC(TVSG-RDSMC).Numerical simulations imply that the proposed TVSG-RDSMC can effectively improve ride comfort and road holding with a significantly reduced chattering.
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.2024QYBS031)Fundamental Research Funds for the Central Universities(Grant No.2022JBQY007)。
文摘Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrations are not well understood.To clarify the vibration transfer function and its characteristics,four basic input vectors are defined,and an analytical method is proposed.The vibration transfer functions of the vehicle system are solved,and their spatial coherence is analyzed.The results show that there are two spatial scales and four coherent modes in the vehicle system.The track irregularity wavelengths are combined with two spatial scales to alter the proportions of basic input vectors and then show the characteristics of spatial coherence.Four coherent modes are involved in wheel-rail force and primary suspension force;two coherent modes are involved in bogie vertical motion;and their dominant modes vary with the input frequency.On the other hand,the coherent modes involved in the bogie pitching motion and vehicle body motion are single and fixed over the whole range of frequency.This study presents an analytical method for the rapid solution of dynamic responses in vehicle systems and systematically analyzes the coherence behavior of vibration transfer functions with respect to tracking irregularity wavelengths.
基金founded by the National Science and Technology Council(Taiwan)under contract NSTC113-2221-E-019-032.
文摘An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based on the Takagi-Sugeno Fuzzy Descriptor Model(T-SFDM),a nonlinear discrete-time descriptor system is represented as several linear fuzzy subsystems,which facilitates the linear P-D feedback technique and streamlines the fuzzy controller design process.Leveraging the P-D feedback fuzzy controller,the closed-loop T-SFDM can be transformed into a standard system that guarantees non-impulsiveness and causality for the nonlinear discrete-time descriptor system.In view of the disturbance problems,a passive performance constraint is incorporated into the fuzzy tracking synthesis to achieve dissipativity of disturbance energy.To achieve a better balance between state and control responses,the H2 performance requirement is considered and a minimization constraint is applied to optimize the H2 index.It is observed that there is a lack of research focusing on both disturbance and control input issues in nonlinear descriptor systems.Extending the Lyapunov theory,a stability analysis method is proposed for the tracking purpose with the combination of the free-weighting matrix to relax the analysis process while complying multiple performance constraints.Finally,two simulation examples are presented to demonstrate the feasibility and applicability of the proposed approach in practical control scenarios for nonlinear descriptor systems.
基金the National Natural Science Foundation of China(Nos.52275038 and 61803347)the Shanxi Province Science Foundation for Excellent Youth(No.202203021224007)+1 种基金the Key Research and Development Plan of Shanxi Province(No.201903D321164)the Opening Foundation of Shanxi Key Laboratory of Advanced Manufacturing Technology(No.XJZZ202101)。
文摘Magnetic tracking technologies have a promising application in detecting the real-time position andattitude of a capsule endoscope.However,most of them need to measure the magnetic moment of a permanentmagnet(PM)embedded in the capsule accurately in advance,which can cause inconvenience to practical application.To solve this problem,this paper proposes a magnetic tracking system with the capability of measuring themagnetic moment of the PM automatically.The system is constructed based on a 4×4 magnetic sensor array,whose sensing data is analyzed to determine the magnetic moment by referring to a magnetic dipole model.Withthe determined magnetic moment,a method of fusing the linear calculation and Levenberg-Marquardt algorithmsis proposed to determine the 3D position and 2D attitude of the PM.The experiments verified that the proposedsystem can achieve localization errors of 0.48 mm,0.42 mm,and 0.83 mm and orientation errors of 0.66◦,0.64◦,and 0.87◦for a PM(∅10 mm×10 mm)at vertical heights of 5 cm,10 cm,and 15 cm from the magnetic sensorarray,respectively.
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.