Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth...Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure.展开更多
A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid w...A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.展开更多
Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process...Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.展开更多
The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds(CVEX-EXP) exper...The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds(CVEX-EXP) experiences an earlier intensification than that with small inner-core winds(CCAVE-EXP), but they have nearly the same intensification rate after spin-up. In the early stage, the convective cells associated with surface heat flux are mainly confined within the inner-core region in CVEXEXP, whereas the vortex in CCAVE-EXP exhibits a considerably asymmetric structure with most of the convective vortices being initiated to the northeast in the outer-core region due to the β effect. The large inner-core inertial stability in CVEX-EXP can prompt a high efficiency in the conversion from convective heating to kinetic energy. In addition, much stronger straining deformation and PBL imbalance in the inner-core region outside the primary eyewall ensue during the initial development stage in CVEX-EXP than in CCAVE-EXP, which is conducive to the rapid axisymmetrization and early intensification in CVEX-EXP. The TC track in CVEX-EXP sustains a northwestward displacement throughout the integration, whereas the TC in CCAVE-EXP undergoes a northeastward recurvature when the asymmetric structure is dominant. Due to the enhanced asymmetric convection to the northeast of the TC center in CCAVE-EXP, a pair of secondary gyres embedded within the large-scale primary β gyres forms, which modulates the ventilation flow and thus steers the TC to move northeastward.展开更多
A novel contour tracking method using weighted structure tensor based variational level set is proposed in this paper.The image is first converted to weighted structure tensor field by extracting apositive definite sy...A novel contour tracking method using weighted structure tensor based variational level set is proposed in this paper.The image is first converted to weighted structure tensor field by extracting apositive definite symmetric covariance matrix for each pixel.Then,a level set method is employed to represent object contour implicitly which separates the image domain into two areas each modeled by tensor field based Gaussian mixture model separately.By solving agradient flow equation of energy functional with respect to the level set,the object contour will converge to its real profile in the newly arrived frame.Experimental results on several video sequences demonstrate the better performance of our method than the other two contour tracking algorithms.展开更多
Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup...Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.展开更多
Stiffness is one of the basic performance parameters for railway track. The efficient and accurate stiffness measurement has been considered as the foundation for further development of railway engineering, and theref...Stiffness is one of the basic performance parameters for railway track. The efficient and accurate stiffness measurement has been considered as the foundation for further development of railway engineering, and therefore has great theoretical and practical significance. Based on a summary of the connotation and measurement of track stiffness, the state of the art of measurement methods for track stiffness was analyzed systematically. The standstill measurement of track stiffness can be performed with the traditional jack-loading method, impact hammer method, FWD (falling weight deflectometer) method, and track loading vehicle method. Although these methods can be adopted in stiffness measurement for a section of railway track, they are not desirable owning to small range and low efficiency. In the recent 20 years, researchers have proposed many methods like unbalancedloading laser displacement method, deflection basin deformation rate method, and eccentricity excitation method to continuously measure track stiffness; however, these methods have drawbacks like poor accuracy, low speed, and insufficient data analysis. In this work, the merits and demerits of these methods were summarized, and optimization suggestions were presented. Based on the wave transmission mechanism and principle of vibration energy harvesting, an overall conception on continuous measurement of stiffness and long-term stiffness monitoring for special sections was proposed.展开更多
The radial distribution of dose around the path of a hemp ion has been studied by a Monte Carlo transport analysis of the delta rays produced along the track of a heavy ion based on classical binary collision dynamics...The radial distribution of dose around the path of a hemp ion has been studied by a Monte Carlo transport analysis of the delta rays produced along the track of a heavy ion based on classical binary collision dynamics and a single scattering model for the electron transport process. Result comparisons among this work and semi-empirical expression based delta ray theory of track structure, as well as other Monte Carlo calculations are made for 1, 3 MeV protons and several heavy ions. The results of the Monte Carlo simulations for energetic heavy ions are in agreement with experimental data and with results of different methods. The characteristic of this Monte Carlo calculation is a simulation of the delta rays theory of track structure.展开更多
With the rapid development of subway lines, more and more electrical problems of track structures are exposed, and the resulting impact is also attracting more and more attention. The electrical safety problems of tra...With the rapid development of subway lines, more and more electrical problems of track structures are exposed, and the resulting impact is also attracting more and more attention. The electrical safety problems of track structure are mainly manifested in three aspects: abnormal distribution of track potential, abnormal return of track structure and abnormal transition resistance of track to ground. Combined with practical engineering experience, common electrical problems and adjustment measures of track structure are summarized, which are used to further analyze the distribution law of track electricity and provide basic research data for solving the safety problems of track electricity.展开更多
Model-set is utilized in state estimation for maneuver- ing target tracking. Two minimal symmetric model-subsets are designed and investigated by moment matching method, which include hypersphere-symmetric model-subse...Model-set is utilized in state estimation for maneuver- ing target tracking. Two minimal symmetric model-subsets are designed and investigated by moment matching method, which include hypersphere-symmetric model-subset and axis-symmetric model-subset, if system mode is a random variable and obeys certain probability distribution. They can be used as the fun- damental model-subset for multiple models estimation with fixed structure, variable structure and moving bank. The model-groups constructed by above designed subsets are given, which give the practical guidance for use of model-set in multiple models ap- proach with a variable structure. Simulation results show that the performances of two minimal model-set significantly outperform the corresponding model-sets with fixed spacing.展开更多
This paper mainly discusses the problem of ground-borne vibrations due to the planned line 8 of Beijing metro which passes under the National Measurement Laboratory.A lot of vibration sensitive equipments are placed i...This paper mainly discusses the problem of ground-borne vibrations due to the planned line 8 of Beijing metro which passes under the National Measurement Laboratory.A lot of vibration sensitive equipments are placed in the laboratory.It is therefore necessary to study the impact of vibrations induced by metro trains on sensitive equipments and important to propound a feasible vibration mitigation measure.Based on the coupled periodic finite element-boundary element (FE-BE) method,a 3D dynamic track-tunnel-soil interaction model for metro line 8 has been used to predict vibrations in the free field induced by trains running at variable speeds between 30 km/h and 80 km/h.Four types of track structures commonly used on the Beijing metro network have been considered:(1) high resilience direct fixation fasteners,(2) Vanguard fasteners,(3) a floating slab track and (4) a floating ladder track.For each of these track types,the vibration isolation efficiency has been compared.The results of the numerical study can be used to predict vibrations in nearby buildings and to decide upon effective vibration countermeasures.展开更多
The influence of the metric of linear energy transfer (LET) on single event upset (SEU), particularly multiple bit upset (MBU) in a hypothetical 90-nm static random access memory (SRAM) is explored. To explain...The influence of the metric of linear energy transfer (LET) on single event upset (SEU), particularly multiple bit upset (MBU) in a hypothetical 90-nm static random access memory (SRAM) is explored. To explain the odd point of higher LET incident ion but induced lower cross section in the curve of SEU cross section, MBUs induced by incident ions 132Xe and 2~9Bi with the same LET but different energies at oblique incidence are investigated using multi-functional package for single event effect analysis (MUFPSA). In addition, a comprehensive analytical model of the radial track structure is incorporated into MUFPSA, which is a complementation for assessing and interpreting MBU susceptibility of SRAM. The results show that (i) with the increase of incident angle, MBU multiplicity and probability each present an increasing trend; (ii) due to the higher ion relative velocity and longer range of ~ electrons, higher energy ions trigger the MBU with less probability than lower energy ions.展开更多
Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along ...Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is po|yline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simu- lated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.展开更多
Geant4 tools were used to model the single event upset (SEU) of static random access memory cells induced by heavy ion irradiation. Simulated results obtained in two different regions of incident ion energies have b...Geant4 tools were used to model the single event upset (SEU) of static random access memory cells induced by heavy ion irradiation. Simulated results obtained in two different regions of incident ion energies have been compared in order to observe the SEU occurrence by energetic ions and their effects on the radial ionization profile of deposited energy density. The disagreement of SEU cross sections of device response and radial distribution of deposited energy density have been observed in both low energy and high energy regions with equal linear energy transfer (LET) which correspond to the both sides of the Bragg peak. In the low energy region, SEUs induced by heavy ions are more dependent upon the incident ion species and radial distribution of deposited energy density, as compared with the high energy region. In addition, the velocity effect of the incident ion in silicon in the high energy region provides valuable feedback for gaining insight into the occurrence of SEU.展开更多
基金Project(2016YFE0205200)supported by the National Key Research and Development Program of ChinaProjects(51425804,51508479)supported by the National Natural Science Foundation of China+1 种基金Project(2016310019)supported by the Doctorial Innovation Fund of Southwest Jiaotong University,ChinaProject(2017GZ0373)supported by the Research Fund for Key Research and Development Projects in Sichuan Province,China
文摘Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure.
文摘A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.
文摘Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.
基金supported financially by the National Basic Research Program of China(Grant No.2014CB953902)the National Natural Science Foundation of China(Grant Nos.41275001 and 41475074)
文摘The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds(CVEX-EXP) experiences an earlier intensification than that with small inner-core winds(CCAVE-EXP), but they have nearly the same intensification rate after spin-up. In the early stage, the convective cells associated with surface heat flux are mainly confined within the inner-core region in CVEXEXP, whereas the vortex in CCAVE-EXP exhibits a considerably asymmetric structure with most of the convective vortices being initiated to the northeast in the outer-core region due to the β effect. The large inner-core inertial stability in CVEX-EXP can prompt a high efficiency in the conversion from convective heating to kinetic energy. In addition, much stronger straining deformation and PBL imbalance in the inner-core region outside the primary eyewall ensue during the initial development stage in CVEX-EXP than in CCAVE-EXP, which is conducive to the rapid axisymmetrization and early intensification in CVEX-EXP. The TC track in CVEX-EXP sustains a northwestward displacement throughout the integration, whereas the TC in CCAVE-EXP undergoes a northeastward recurvature when the asymmetric structure is dominant. Due to the enhanced asymmetric convection to the northeast of the TC center in CCAVE-EXP, a pair of secondary gyres embedded within the large-scale primary β gyres forms, which modulates the ventilation flow and thus steers the TC to move northeastward.
基金Supported by the National High-Tech Research & Development Program of China(2009AA01Z323)
文摘A novel contour tracking method using weighted structure tensor based variational level set is proposed in this paper.The image is first converted to weighted structure tensor field by extracting apositive definite symmetric covariance matrix for each pixel.Then,a level set method is employed to represent object contour implicitly which separates the image domain into two areas each modeled by tensor field based Gaussian mixture model separately.By solving agradient flow equation of energy functional with respect to the level set,the object contour will converge to its real profile in the newly arrived frame.Experimental results on several video sequences demonstrate the better performance of our method than the other two contour tracking algorithms.
基金Project(51378050) supported by the National Natural Science Foundation of ChinaProject(B13002) supported by the “111” Project,China+2 种基金Project (8192035) supported by the Beijing Municipal Natural Science Foundation,ChinaProject(P2019G002) supported by the Science and Technology Research and Development Program of China RailwayProject(2019YJ193) supported by the State Key Laboratory for Track Technology of High-speed Railway,China。
文摘Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.
基金supported by the project (51425804) of the National Science Fund for Distinguished Young Scholars of Chinathe National Natural Science Foundation of China (NSFC) under grants U1234201, U1334203, and 51378439
文摘Stiffness is one of the basic performance parameters for railway track. The efficient and accurate stiffness measurement has been considered as the foundation for further development of railway engineering, and therefore has great theoretical and practical significance. Based on a summary of the connotation and measurement of track stiffness, the state of the art of measurement methods for track stiffness was analyzed systematically. The standstill measurement of track stiffness can be performed with the traditional jack-loading method, impact hammer method, FWD (falling weight deflectometer) method, and track loading vehicle method. Although these methods can be adopted in stiffness measurement for a section of railway track, they are not desirable owning to small range and low efficiency. In the recent 20 years, researchers have proposed many methods like unbalancedloading laser displacement method, deflection basin deformation rate method, and eccentricity excitation method to continuously measure track stiffness; however, these methods have drawbacks like poor accuracy, low speed, and insufficient data analysis. In this work, the merits and demerits of these methods were summarized, and optimization suggestions were presented. Based on the wave transmission mechanism and principle of vibration energy harvesting, an overall conception on continuous measurement of stiffness and long-term stiffness monitoring for special sections was proposed.
文摘The radial distribution of dose around the path of a hemp ion has been studied by a Monte Carlo transport analysis of the delta rays produced along the track of a heavy ion based on classical binary collision dynamics and a single scattering model for the electron transport process. Result comparisons among this work and semi-empirical expression based delta ray theory of track structure, as well as other Monte Carlo calculations are made for 1, 3 MeV protons and several heavy ions. The results of the Monte Carlo simulations for energetic heavy ions are in agreement with experimental data and with results of different methods. The characteristic of this Monte Carlo calculation is a simulation of the delta rays theory of track structure.
文摘With the rapid development of subway lines, more and more electrical problems of track structures are exposed, and the resulting impact is also attracting more and more attention. The electrical safety problems of track structure are mainly manifested in three aspects: abnormal distribution of track potential, abnormal return of track structure and abnormal transition resistance of track to ground. Combined with practical engineering experience, common electrical problems and adjustment measures of track structure are summarized, which are used to further analyze the distribution law of track electricity and provide basic research data for solving the safety problems of track electricity.
基金supported by Liaoning Province Innovative Team of Higher Education(2008T090)
文摘Model-set is utilized in state estimation for maneuver- ing target tracking. Two minimal symmetric model-subsets are designed and investigated by moment matching method, which include hypersphere-symmetric model-subset and axis-symmetric model-subset, if system mode is a random variable and obeys certain probability distribution. They can be used as the fun- damental model-subset for multiple models estimation with fixed structure, variable structure and moving bank. The model-groups constructed by above designed subsets are given, which give the practical guidance for use of model-set in multiple models ap- proach with a variable structure. Simulation results show that the performances of two minimal model-set significantly outperform the corresponding model-sets with fixed spacing.
基金supported by the National Natural Science Foundation of China (Nos.50538010 and 50848046)the Research Council of K.U. Leuven (Bilateral Project BIL07/07),Belgium
文摘This paper mainly discusses the problem of ground-borne vibrations due to the planned line 8 of Beijing metro which passes under the National Measurement Laboratory.A lot of vibration sensitive equipments are placed in the laboratory.It is therefore necessary to study the impact of vibrations induced by metro trains on sensitive equipments and important to propound a feasible vibration mitigation measure.Based on the coupled periodic finite element-boundary element (FE-BE) method,a 3D dynamic track-tunnel-soil interaction model for metro line 8 has been used to predict vibrations in the free field induced by trains running at variable speeds between 30 km/h and 80 km/h.Four types of track structures commonly used on the Beijing metro network have been considered:(1) high resilience direct fixation fasteners,(2) Vanguard fasteners,(3) a floating slab track and (4) a floating ladder track.For each of these track types,the vibration isolation efficiency has been compared.The results of the numerical study can be used to predict vibrations in nearby buildings and to decide upon effective vibration countermeasures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11179003,10975164,10805062,and 11005134)
文摘The influence of the metric of linear energy transfer (LET) on single event upset (SEU), particularly multiple bit upset (MBU) in a hypothetical 90-nm static random access memory (SRAM) is explored. To explain the odd point of higher LET incident ion but induced lower cross section in the curve of SEU cross section, MBUs induced by incident ions 132Xe and 2~9Bi with the same LET but different energies at oblique incidence are investigated using multi-functional package for single event effect analysis (MUFPSA). In addition, a comprehensive analytical model of the radial track structure is incorporated into MUFPSA, which is a complementation for assessing and interpreting MBU susceptibility of SRAM. The results show that (i) with the increase of incident angle, MBU multiplicity and probability each present an increasing trend; (ii) due to the higher ion relative velocity and longer range of ~ electrons, higher energy ions trigger the MBU with less probability than lower energy ions.
基金financial support from the National Natural Science Foundation of China under Grant No.50978007
文摘Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is po|yline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simu- lated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.
基金Supported by National Natural Science Foundation of China(11179003,10975164,10805062,11005134)
文摘Geant4 tools were used to model the single event upset (SEU) of static random access memory cells induced by heavy ion irradiation. Simulated results obtained in two different regions of incident ion energies have been compared in order to observe the SEU occurrence by energetic ions and their effects on the radial ionization profile of deposited energy density. The disagreement of SEU cross sections of device response and radial distribution of deposited energy density have been observed in both low energy and high energy regions with equal linear energy transfer (LET) which correspond to the both sides of the Bragg peak. In the low energy region, SEUs induced by heavy ions are more dependent upon the incident ion species and radial distribution of deposited energy density, as compared with the high energy region. In addition, the velocity effect of the incident ion in silicon in the high energy region provides valuable feedback for gaining insight into the occurrence of SEU.