期刊文献+
共找到11,035篇文章
< 1 2 250 >
每页显示 20 50 100
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
1
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Quaternion-Based Modeling and Predefined-Time Tracking Control of a Fully Actuated Autonomous Underwater Vehicle
2
作者 Yiming Li Xiao Wang +2 位作者 Jinglong Shi Jian Liu Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2275-2285,共11页
This paper investigates the modeling and the practical predefined-time(PdT)tracking control problems for a fully actuated disk-shaped autonomous underwater vehicle(AUV)with six degrees of freedom.To overcome the gimba... This paper investigates the modeling and the practical predefined-time(PdT)tracking control problems for a fully actuated disk-shaped autonomous underwater vehicle(AUV)with six degrees of freedom.To overcome the gimbal lock problem inherent in Euler angle representation,unit quaternions are adopted to model the AUV,accounting for internal uncertainties and external disturbances.Then,an improved time-varying function is introduced,which serves as the basis for designing a nonsingular sliding surface and sliding mode controller with PdT stability.This approach ensures that the tracking errors converge within a predefined time,independent of initial conditions and design parameters.Compared with traditional PdT controllers,the proposed method eliminates singularities,enhances the precision of convergence time estimation,and typically yields smaller,smoother initial control inputs,thus improving its potential for engineering applications.Numerical simulations validate the effectiveness and performance of the proposed controller. 展开更多
关键词 Autonomous underwater vehicle(AUV) nonlinear control predefined-time control tracking control unit quaternion
在线阅读 下载PDF
Fishing Ship Trajectory Tracking Control Based on the Closed-Loop Gain Shaping Algorithm Under Rough Sea
3
作者 SONG Chun-yu GUO Te-er SUI Jiang-hua 《China Ocean Engineering》 2025年第2期365-372,共8页
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working... This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships. 展开更多
关键词 trajectory tracking control nonlinear feedback control fishing ship closed-loop gain shaping algorithm rough sea
在线阅读 下载PDF
Neural Network Adaptive Hierarchical Sliding Mode Control for the Trajectory Tracking of a Tendon-Driven Manipulator
4
作者 Yudong Zhang Leiying He +2 位作者 Jianneng Chen Bo Yan Chuanyu Wu 《Chinese Journal of Mechanical Engineering》 2025年第2期295-314,共20页
Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory ... Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory tracking control of the manipulator.This paper proposes the radial basis function neural network adaptive hierarchical sliding mode control(RBFNNA-HSMC)method,which combines the dynamic model of the elastic tendon-driven manipulator(ETDM)with radial basis neural network adaptive control and hierarchical sliding mode control technology.The aim is to achieve trajectory tracking control of ETDM even under conditions of model inaccuracy and disturbance.The Lyapunov stability theory demonstrates the stability of the proposed RBFNNA-HSM controller.In order to assess the effectiveness and adaptability of the proposed control method,simulations and experiments were performed on a two-DOF ETDM.The RBFNNA-HSM method shows superior tracking accuracy compared to traditional modelbased HSM control.The experiment shows that the maximum tracking error for ETDM double-joint trajectory tracking is below 2.593×10-3rad and 1.624×10-3rad,respectively. 展开更多
关键词 Elastic tendon-driven manipulator Flexible joint Hierarchical sliding mode control Neural network adaptive control tracking control
在线阅读 下载PDF
Adaptive Dual-Loop Disturbance Observer-Based Robust Model Predictive Tracking Control for Autonomous Hypersonic Vehicles
5
作者 Runqi Chai Tianhao Liu +4 位作者 Shaoming He Kaiyuan Chen Yuanqing Xia Hyo-Sang Shin Antonios Tsourdos 《IEEE/CAA Journal of Automatica Sinica》 2025年第9期1814-1829,共16页
To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,whic... To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,which can produce near-optimal tracking commands.Unlike the existing designs,the proposed scheme is less conservative and successfully prioritizes the solution optimality.The established RMPC follows a dualloop structure.Specifically,in the outer feedback loop,the reference attitude angle profiles are optimally tracked,while in the inner feedback loop,the control moment commands are produced by optimally tracking the desired angular rate trajectories.Besides,an adaptive disturbance observer(ADO)is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances.The recursive feasibility of the optimization process,together with the input-to-state stability of the proposed RMPC,is theoretically guaranteed by introducing a tightened control constraint and terminal region.The derived property reveals that our proposal can steer the tracking error within a small region of convergence.Finally,the effectiveness of the proposed scheme is demonstrated by performing simulation studies. 展开更多
关键词 Adaptive disturbance observers(ADO) attitude tracking control dual-loop structure hypersonic vehicle robust model predictive control(CRMPC)
在线阅读 下载PDF
A Back-stepping Based Trajectory Tracking Controller for a Non-chained Nonholonomic Spherical Robot 被引量:6
6
作者 战强 刘增波 蔡尧 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期472-480,共9页
Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This artic... Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This article deals with the dynamic trajectory tracking problem of the spherical robot BHQ-2 designed for unmanned environment exploration. The dynamic model of the spherical robot is established with a simplified Boltzmann-Hamel equation, based on which a trajectory tracking controller is designed by using the back-stepping method. The convergence of the controller is proved with the Lyapunov stability theory. Numerical simulations show that with the controller the robot can globally and asymptotically track desired trajectories, both linear and circular. 展开更多
关键词 spherical mobile robot trajectory tracking control back-stepping Lyapunov function
在线阅读 下载PDF
ROBUST ADAPTIVE CONTROL SCHEME FOR IMPROVING LOW-SPEED PROFILE TRACKING PERFORMANCE OF HYBRID STEPPING MOTOR SERVO DRIVE 被引量:3
7
作者 陈卫东 容启亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第1期8-16,共9页
A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precisio... A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precision profile tracking at a low speed. In order to construct a completely integrated control design philosophy to reduce torque ripple and at the same time to enhance tracking performance, the properties of nonlinear uncertainties in the system dynamics are uncovered, and then incorporated into the design of the controller. The system uncertainties concerned with ripple dynamics and other external disturbances are composed of two categories. The first category of uncertainties with linear parameterization arising from the detention effect is dealt with by the wellknown adaptive control method. A robust adaptive method is used to deal with the second category of uncertainties resulting from the non-sinusoidal flux distribution. The μ-modification scheme is used to cease parameter adaptation by the robust adaptive control law, thus ensuring that the trajectory tracking error asymptotically converges to a pre-specified boundary. Experiments are performed with a typical hybrid stepping motor to test its profile tracking accuracy. Results confirm the proposed control scheme. 展开更多
关键词 robust adaptive control tracking control stepping motor torque ripple
在线阅读 下载PDF
Self Adjusting Feedforward Compensation Tracking Control for Proportional Valve Controlled Motor 被引量:1
8
作者 彭熙伟 王渝 王向周 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期282-287,共6页
Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the v... Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation. 展开更多
关键词 self adjusting feedforward compensation deadzone compensation tracking control electrohydraulic proportional servo system
在线阅读 下载PDF
ADAPTIVE TRACKING CONTROL FOR A CLASS OF NONLINEAR COMPOSITE SYSTEMS *
9
作者 姜斌 万健如 +1 位作者 王先来 王江 《Transactions of Tianjin University》 EI CAS 1998年第1期88-91,共4页
In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonli... In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method. 展开更多
关键词 nonlinear large scale systems adaptive tracking control input output linearization
在线阅读 下载PDF
Time-varying Sliding Mode Controls in Rigid Spacecraft Attitude Tracking 被引量:19
10
作者 靳永强 刘向东 +1 位作者 邱伟 侯朝桢 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期352-360,共9页
To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of c... To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of control input constraints. The sliding surfaces of the three types initially pass arbitrary initial values of the system, and then shift or rotate to reach predetermined ones. This way, the system trajectories are always on the sliding surfaces, and the system work is guaranteed to have robustness against parameter uncertainty and external disturbances all the time. The controller parameters are optimized by means of genetic algorithm to minimize the index consisting of the weighted index of squared error (ISE) of the system and the weighted penalty term of violation of control input constraint. The stability is verified with Lyapunov method. Compared with the conventional sliding mode control, simulation results show the proposed algorithm having better robustness against inertia matrix uncertainty and external disturbance torques. 展开更多
关键词 attitude tracking control time-varying sliding mode control input constraint genetic algorithm
在线阅读 下载PDF
PMAC-based Tracking Control System for 8-axis Automated Tape-laying Machine 被引量:11
11
作者 Liu Lin Li Yong Wen Liwei Xiao Jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第5期558-563,共6页
This article introduces a computer numerical control (CNC)-based open hardware architecture system to realize the special functions of automated tape-laying (ATL) in a numerical control system. It associates a pro... This article introduces a computer numerical control (CNC)-based open hardware architecture system to realize the special functions of automated tape-laying (ATL) in a numerical control system. It associates a programmable multi-axis controller (PMAC) as the motion control unit with programmable numerical controllers (PCL-725, PCL-730) for on-off control. To bring about synchronized movements of the main 5-axis tape-laying head system and the 3-axis ultrasonic tape-cutting sub-system, the tracking-control method associated with time-based mode attributed to PMAC is applied in different cases. In addition, with the goal of realizing real-time tasks in the software system such as synchronizing motion control and on-off control, the real-time Win 2000 system is adopted. As a device driver for PMAC and PCL, a user graphical interface and a numerical control program interpretation module are also designed. This system is helpful to solve complicated problems in designing numerical controls for ATL such as ensuring high requirements for precise machine control and synchronization of motion control and on-off control. 展开更多
关键词 automated tape-laying tape-cutting programmable multi-axis controller on-off control systems tracking control
原文传递
Parallel Control for Optimal Tracking via Adaptive Dynamic Programming 被引量:26
12
作者 Jingwei Lu Qinglai Wei Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第6期1662-1674,共13页
This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is int... This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases. 展开更多
关键词 Adaptive dynamic programming(ADP) nonlinear optimal control parallel controller parallel control theory parallel system tracking control neural network(NN)
在线阅读 下载PDF
Robust Tracking Control for Self-balancing Mobile Robots Using Disturbance Observer 被引量:12
13
作者 Mou Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期458-465,共8页
In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly desi... In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances. 展开更多
关键词 Disturbance observer robust tracking control self-balancing mobile robot sliding mode control(SMC)
在线阅读 下载PDF
Formation tracking control for time-delayed multi-agent systems with second-order dynamics 被引量:8
14
作者 Han Liang Dong Xiwang +1 位作者 Li Qingdong Ren Zhang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期348-357,共10页
In this paper, formation tracking control problems for second-order multi-agent systems(MASs) with time-varying delays are studied, specifically those where the position and velocity of followers are designed to for... In this paper, formation tracking control problems for second-order multi-agent systems(MASs) with time-varying delays are studied, specifically those where the position and velocity of followers are designed to form a time-varying formation while tracking those of the leader. A neighboring relative state information based formation tracking protocol with an unknown gain matrix and time-varying delays is presented. The formation tracking problems are then transformed into asymptotically stable problems. Based on the Lyapunov-Krasovskii functional approach, conditions sufficient for second-order MASs with time-varying delays to realize formation tracking are examined. An approach to obtain the unknown gain matrix is given and, since neighboring relative velocity information is difficult to measure in practical applications, a formation tracking protocol with time-varying delays using only neighboring relative position information is introduced. The proposed results can be used on target enclosing problems for MASs with second-order dynamics and time-varying delays. An application for target enclosing by multiple unmanned aerial vehicles(UAVs) is given to demonstrate the feasibility of theoretical results. 展开更多
关键词 Formation tracking control Multiple unmanned aerialvehicles Second-order dynamics Time-delayed multi-agentsystems Time-varying formation
原文传递
Adaptive backstepping finite-time sliding mode control of spacecraft attitude tracking 被引量:9
15
作者 Chutiphon Pukdeboon 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期826-839,共14页
This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertaint... This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers. 展开更多
关键词 attitude tracking control sliding mode control back-stepping design finite-time convergence.
在线阅读 下载PDF
Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer 被引量:14
16
作者 Wenqiang ZHANG Chaoyang DONG +1 位作者 Maopeng RAN Yang LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第11期2907-2920,共14页
This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended ... This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework. 展开更多
关键词 Directed interaction topology Distributed control Disturbance rejection Finite-time convergent extended state observer(FTCESO) Formation tracking control Multi-agent systems
原文传递
Optimal Tracking Controller Design for a Small Scale Helicopter 被引量:8
17
作者 Agus Budiyono Singgih S. Wibowo 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第4期271-280,共10页
A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused ... A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed. The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs. 展开更多
关键词 small scale helicopter optimal control tracking control rotorcraft-based UAV
在线阅读 下载PDF
Adaptive Robust Motion Trajectory Tracking Control of Pneumatic Cylinders with LuGre Model-based Friction Compensation 被引量:6
18
作者 MENG Deyuan TAO Guoliang +1 位作者 LIU Hao ZHU Xiaocong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期802-815,共14页
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple c... Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder. 展开更多
关键词 servo-pneumatic system tracking control sliding mode control adaptive control LuGre model
在线阅读 下载PDF
Tracking control for air-breathing hypersonic cruise vehicle based on tangent linearization approach 被引量:7
19
作者 Guangbin Cai Guangren Duan +1 位作者 Changhua Hu Bin Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期469-475,共7页
This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly cha... This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results. 展开更多
关键词 hypersonic cruise vehicles tangent linearization tracking control nonlinear control.
在线阅读 下载PDF
Local Path Planning and Tracking Control of Vehicle Collision Avoidance System 被引量:6
20
作者 Xu Zhijiang Zhao Wanzhong +1 位作者 Wang Chunyan Dai Yifan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期729-738,共10页
Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving fo... Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving for intelligent vehicle in intelligent transportation.We present a collision avoidance system,which is composed of an evasive trajectory planner and a path following controller.Considering the stability of the vehicle in the conflict-free process,the evasive trajectory planner is designed by polynomial parametric method and optimized by genetic algorithm.The path following controller is proposed to make the car drive along the designed path by controlling the vehicle's lateral movement.Simulation results show that the vehicle with the proposed controller has good stability in the collision process,and it can ensure the vehicle driving in accordance with the planned trajectory at different speeds.The research results can provide a certain basis for the research and development of automotive collision avoidance technology. 展开更多
关键词 VEHICLE collision avoidance dynamic model path planning tracking control
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部