为探究种植菌草的丘陵地区土壤间、土壤与移栽触土部件间相互作用的规律并获取其仿真参数,运用Hertz—Mindlin with JKR接触模型对特定的12%±1%和20%±1%的含水率土壤—移栽触土部件进行离散元参数标定。开展土壤堆积角物理试...为探究种植菌草的丘陵地区土壤间、土壤与移栽触土部件间相互作用的规律并获取其仿真参数,运用Hertz—Mindlin with JKR接触模型对特定的12%±1%和20%±1%的含水率土壤—移栽触土部件进行离散元参数标定。开展土壤堆积角物理试验、土球斜面滚动物理试验。以土壤颗粒间、土壤与移栽触土部件间的表面能、恢复系数、动摩擦系数、静摩擦系数为标定对象,设计旋转中心组合试验并以仿真的土壤堆积角、土球在65Mn板上滚动距离为响应值,采用Box—Behnken对试验数据回归分析,以实测的土壤堆积角、土球滚动距离为优化目标,采用两种典型含水率下土壤与触土材料(65Mn)的静摩擦系数为约束条件,得到两种典型含水率的土壤间、土壤与移栽触土部件的离散元参数:含水率分别为12%±1%、20%±1%时,土壤颗粒间表面能、恢复系数、动摩擦系数、静摩擦系数为11.042 J/m^(2)和11.851 J/m^(2)、0.412和0.574、0.093和0.129、0.994和1.009;土壤与触土部件表面能、恢复系数、动摩擦系数为5.046 J/m^(2)、8.026 J/m^(2),0.362、0.388和0.066、0.07。为验证优化后离散元参数的准确性,开展验证试验得:两种典型含水率土壤仿真、物理堆积角相对误差为0.96%、0.95%,仿真、物理滚动试验相对误差为0.52%、1%。结果表明,优化标定后的土壤模型参数能够仿真该地区真实的菌草土壤模型,可为菌草移栽械关键部件的设计与优化提供重要理论依据。展开更多
结合有限元离散元方法(finite-discrete element method,FDEM),对计算流体力学(computational fluid dynamics,CFD)软件FLOW-3D进行二次开发,建立了基于CFD-DEM的流固耦合模型,模拟了多块石入水、沉降以及触底的动力过程,分析了不同块...结合有限元离散元方法(finite-discrete element method,FDEM),对计算流体力学(computational fluid dynamics,CFD)软件FLOW-3D进行二次开发,建立了基于CFD-DEM的流固耦合模型,模拟了多块石入水、沉降以及触底的动力过程,分析了不同块石等效直径、形状和入水速度对触底速度和反力的影响。研究发现,块石入水后速度迅速减小,并逐渐趋于定值,随后做动态平衡沉降运动,直至与底面发生碰撞。块石抛填的触底速度随等效直径的增大而增大,不同等效直径下球形块石触底速度绝对值最大,其次是纺锤形块石,最小为圆盘形块石。最大触底反力也随等效直径的增大而增大,成非线性关系,通过拟合得到了触底反力的经验公式。显著性分析结果表明,块石等效直径对触底反力影响最大,其次是块石形状,最小为入水速度。展开更多
文摘结合有限元离散元方法(finite-discrete element method,FDEM),对计算流体力学(computational fluid dynamics,CFD)软件FLOW-3D进行二次开发,建立了基于CFD-DEM的流固耦合模型,模拟了多块石入水、沉降以及触底的动力过程,分析了不同块石等效直径、形状和入水速度对触底速度和反力的影响。研究发现,块石入水后速度迅速减小,并逐渐趋于定值,随后做动态平衡沉降运动,直至与底面发生碰撞。块石抛填的触底速度随等效直径的增大而增大,不同等效直径下球形块石触底速度绝对值最大,其次是纺锤形块石,最小为圆盘形块石。最大触底反力也随等效直径的增大而增大,成非线性关系,通过拟合得到了触底反力的经验公式。显著性分析结果表明,块石等效直径对触底反力影响最大,其次是块石形状,最小为入水速度。