Correlation relationships of 10 topological indices and molar refraction for 47 struc- turally-complicated organotins which included 16 ionic compounds R_mSnX_(4-m) and 31 covalent ones R_4Sn that is 41 aliphatic comp...Correlation relationships of 10 topological indices and molar refraction for 47 struc- turally-complicated organotins which included 16 ionic compounds R_mSnX_(4-m) and 31 covalent ones R_4Sn that is 41 aliphatic compounds(15 unsaturated and 26 saturated)and 6 aromatic ones were studied.Suitability of these ten topological parameters for describing the structure of elemental or- ganic compounds was then evaluated according to the correlation results.Two lately improved molecular connectivity indices(MCIs)-radius-corrected MCI ~1X^r and bond-length-corrected MCI ~1X^b were applied and proved to be most suitable for the structure expression in QSA(P)R studies of organotins or other elemental organic compounds.展开更多
Objective: The purpose of this work is to examine the usefulness of the topological approach for analysis of current density maps during ST-T interval in detection of coronary artery disease (CAD) in patients with pro...Objective: The purpose of this work is to examine the usefulness of the topological approach for analysis of current density maps during ST-T interval in detection of coronary artery disease (CAD) in patients with proved CAD but normal results of routine tests. Materials and Methods: The patient group included 123 patients. Coronary angiography was done due to chest pain. The control group consisted of 124 healthy volunteers. The MCG test was done by 4-channels MCG system installed at unshielded setting. An integral topological index Kideal, consisting of 4 parameters, has been counted. Results and Conclusions: It is shown that Kideal was higher in patient group compared to control one. Sensitivity was 87%, and specificity was 64%. The topological analysis of MCG current density maps is a valuable tool in noninvasive detection of CAD in difficult-to-diagnose patients with uninformative results of routine tests.展开更多
Dynamical quantum phase transitions(DQPTs),characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters(DTOPs)over time,have garnered enormous attention in recent ...Dynamical quantum phase transitions(DQPTs),characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters(DTOPs)over time,have garnered enormous attention in recent decades.However,in non-Hermitian systems,the special biorthogonality of the bases makes the definition of DQPTs complex.In this work,we delve into the comprehensive investigation of self-normal DQPTs(originally used in Hermitian systems)to compare them with their biorthogonal counterpart,within the context of non-Hermitian quantum walks(QWs).We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches.While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases,we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points.Finally,we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.展开更多
基金This work was supported by the National Natural Science Foundation of China
文摘Correlation relationships of 10 topological indices and molar refraction for 47 struc- turally-complicated organotins which included 16 ionic compounds R_mSnX_(4-m) and 31 covalent ones R_4Sn that is 41 aliphatic compounds(15 unsaturated and 26 saturated)and 6 aromatic ones were studied.Suitability of these ten topological parameters for describing the structure of elemental or- ganic compounds was then evaluated according to the correlation results.Two lately improved molecular connectivity indices(MCIs)-radius-corrected MCI ~1X^r and bond-length-corrected MCI ~1X^b were applied and proved to be most suitable for the structure expression in QSA(P)R studies of organotins or other elemental organic compounds.
文摘Objective: The purpose of this work is to examine the usefulness of the topological approach for analysis of current density maps during ST-T interval in detection of coronary artery disease (CAD) in patients with proved CAD but normal results of routine tests. Materials and Methods: The patient group included 123 patients. Coronary angiography was done due to chest pain. The control group consisted of 124 healthy volunteers. The MCG test was done by 4-channels MCG system installed at unshielded setting. An integral topological index Kideal, consisting of 4 parameters, has been counted. Results and Conclusions: It is shown that Kideal was higher in patient group compared to control one. Sensitivity was 87%, and specificity was 64%. The topological analysis of MCG current density maps is a valuable tool in noninvasive detection of CAD in difficult-to-diagnose patients with uninformative results of routine tests.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406701)National Natural Science Foundation of China(Grants No.12025401,92265209,12474352,92476106,and 12088101)Kunkun Wang and Lei Xiao acknowledge support from Beijing National Laboratory for Condensed Matter Physics(No.2024BNLCMPKF010).
文摘Dynamical quantum phase transitions(DQPTs),characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters(DTOPs)over time,have garnered enormous attention in recent decades.However,in non-Hermitian systems,the special biorthogonality of the bases makes the definition of DQPTs complex.In this work,we delve into the comprehensive investigation of self-normal DQPTs(originally used in Hermitian systems)to compare them with their biorthogonal counterpart,within the context of non-Hermitian quantum walks(QWs).We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches.While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases,we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points.Finally,we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.