期刊文献+
共找到327篇文章
< 1 2 17 >
每页显示 20 50 100
Topological optimization of metamaterial absorber based on improved estimation of distribution algorithm
1
作者 TAO Shifei LIU Beichen +2 位作者 LIU Sixing WU Fan WANG Hao 《Journal of Systems Engineering and Electronics》 2025年第3期634-641,共8页
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa... An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm. 展开更多
关键词 METAMATERIAL topological optimization estimation of distribution algorithm
在线阅读 下载PDF
Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization
2
作者 Yu Chen Wu-Hao Cao +4 位作者 Jia-Qi Li Ming-Zhe Zhang Xin-Yi Du Ding-Shan Gao Pei-Li Li 《Chinese Physics B》 2025年第4期432-440,共9页
A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering a... A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar. 展开更多
关键词 coding metasurfaces polarization-independent TERAHERTZ topology optimization
原文传递
A NEW METHOD FOR STRUCTURAL TOPOLOGICAL OPTIMIZATION BASED ON THE CONCEPT OF INDEPENDENT CONTINUOUS VARIABLES AND SMOOTH MODEL 被引量:84
3
作者 隋允康 杨德庆 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1998年第2期179-185,共7页
A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in... A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations. 展开更多
关键词 structural topological optimization smooth model adaptive algorithm truss structure independent-continuous variable filter function
在线阅读 下载PDF
Independent continuous mapping for topological optimization of frame structures 被引量:10
4
作者 Yunkang Sui Jiazheng Du Yingqiao Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期611-619,共9页
Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable s... Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable stress and element stiffness, which transform the 0-1 type discrete topological variables into continuous topological variables between 0 and 1. Two methods for the filter functions are adopted to avoid the structural singularity and recover falsely deleted elements: the weak material element method and the tiny section element method. Three criteria (no structural singularity, no violated constraints and no change of structural weight) are introduced to judge iteration convergence. These criteria allow finding an appropriate threshold by adjusting a discount factor in the iteration procedure. To improve the efficiency, the original optimization model is transformed into a dual problem according to the dual theory and solved in its dual space. By using MSC/Nastran as the structural solver and MSC/Patran as the developing platform, a topological optimization software of frame structures is accomplished. Numerical examples show that the ICM method is very efficient for the topological optimization of frame structures. 展开更多
关键词 Frame structures topological optimization ICM method Filter functions Element elimination
在线阅读 下载PDF
A structural topological optimization method for multi-displacement constraints and any initial topology configuration 被引量:10
5
作者 J. H. Rong J. H. Yi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第5期735-744,共10页
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topolo... In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable. 展开更多
关键词 topological optimization Displacement constraint Continuum structure Design space adjustment Rational approximation material model
在线阅读 下载PDF
Customized reconstructive prosthesis design based on topological optimization to treat severe proximal tibia defect 被引量:6
6
作者 Aobo Zhang Hao Chen +5 位作者 Yang Liu Naichao Wu Bingpeng Chen Xue Zhao Qing Han Jincheng Wang 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第1期87-99,共13页
A novel reconstructive prosthesis was designed with topological optimization(TO)and a lattice structure to enhance biomechanical and biological properties in the proximal tibia.The biomechanical performance was valida... A novel reconstructive prosthesis was designed with topological optimization(TO)and a lattice structure to enhance biomechanical and biological properties in the proximal tibia.The biomechanical performance was validated through finite element analysis(FEA)and biomechanical tests.The tibia with inhomogeneous material properties was reconstructed according to computed tomography images,and different components were designed to simulate the operation.Minimum compliance TO subject to a volume fraction constraint combined with a graded lattice structure was utilized to redesign the prosthesis.FEA was performed to evaluate the mechanical performances of the tibia and implants after optimization,including stress,micromotion,and strain energy.The results were analyzed by paired-samples t tests,and p<0.05 was considered significant.Biomechanical testing was used to verify the tibial stresses.Compared to the original group(OG),the TO group(TOG)exhibited lower stress on the stem,and the maximum von Mises stresses were 87.2 and 53.1 MPa,respectively,a 39.1%reduction(p<0.05).Conversely,the stress and strain energy on the tibia increased in the TOG.The maximum von Mises stress values were 16.4 MPa in the OG and 22.9 MPa in the TOG with a 39.6%increase(p<0.05),and the maximum SED value was 0.026 MPa in the OG and 0.042 MPa in the TOG,corresponding to an increase of 61.5%(p<0.05).The maximum micromotions in the distal end of the stem were 135μm in the OG and 68μm in the TOG,almost a 50%reduction.The stress curves of the biomechanical test coincided well with the FEA results.The TO approach can effectively reduce the whole weight of the prosthesis and improve the biomechanical environment of the tibia.It could also pave the way for next-generation applications in orthopedics surgery. 展开更多
关键词 Customized reconstructive prosthesis topological optimization Finite element analysis Graded lattice Severe bone defect Proximal tibia
暂未订购
Topological Optimization Method for Aeronautical Thin-Walled Component Fixture Locating Layout 被引量:2
7
作者 Yang Yuan Wang Zhongqi +1 位作者 Yang Bo Kang Yonggang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第4期405-412,共8页
Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout... Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model. 展开更多
关键词 aeronautical thin-walled component fixture locating layout topological optimization variable-density method
在线阅读 下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
8
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 topological optimization Protective structure Genetic algorithm SURVIVABILITY VULNERABILITY
在线阅读 下载PDF
A METHOD FOR TOPOLOGICAL OPTIMIZATION OF STRUCTURES WITH DISCRETE VARIABLES UNDER DYNAMIC STRESS AND DISPLACEMENT CONSTRAINTS
9
作者 石连栓 孙焕纯 冯恩民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第7期781-787,共7页
A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem un... A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution. 展开更多
关键词 discrete variables structure optimization topological optimization dynamic stress constraint dynamic displacement constraint
在线阅读 下载PDF
Experimental and Numerical Investigation on High-Pressure Centrifugal Pumps:Ultimate Pressure Formulation,Fatigue Life Assessment and Topological Optimization of Discharge Section
10
作者 Abdourahamane Salifou Adam Hatem Mrad +1 位作者 Haykel Marouani Yasser Fouad 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2845-2865,共21页
A high percentage of failure in pump elements originates from fatigue.This study focuses on the discharge section behavior,made of ductile iron,under dynamic load.An experimental protocol is established to collect the... A high percentage of failure in pump elements originates from fatigue.This study focuses on the discharge section behavior,made of ductile iron,under dynamic load.An experimental protocol is established to collect the strain under pressurization and depressurization tests at specific locations.These experimental results are used to formulate the ultimate pressure expression function of the strain and the lateral surface of the discharge section and to validate finite element modeling.Fe-Safe is then used to assess the fatigue life cycle using different types of fatigue criteria(Coffin-Manson,Morrow,Goodman,and Soderberg).When the pressure is under 3000 PSI,pumps have an unlimited service life of 107 cycles,regardless of the criterion.However,for a pressure of 3555 PSI,only the Morrow criterion denotes a significant decrease in fatigue life cycles,as it considers the average stress.The topological optimization is then applied to the most critical pump model(with the lowest fatigue life cycle)to increase its fatigue life.Using the solid isotropic material with a penalization approach,the Abaqus Topology OptimizationModule is employed.The goal is to reduce the strain energy density while keeping the volume within bounds.According to the findings,a 5%volume reduction causes the strain energy density to decrease from 1.06 to 0.66106 J/m^(3).According to Morrow,the fatigue life cycle at 3,555 PSI is 782,425 longer than the initial 309,742 cycles. 展开更多
关键词 Centrifugal pump ultimate pressure fatigue life topological optimization
在线阅读 下载PDF
THE TOPOLOGICAL OPTIMIZATION FOR TRUSS STRUCTURES WITH STRESS CONSTRAINTS BASED ON THE EXIST-NULL COMBINED MODEL 被引量:9
11
作者 隋允康 于新 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1998年第4期363-370,共8页
A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be ob... A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization. 展开更多
关键词 structural topology optimization independent and continuous topological variable smooth model exist-null combination TRUSS stress constraint
在线阅读 下载PDF
LEVEL SET METHOD FOR TOPOLOGICAL OPTIMIZATION APPLYING TO STRUCTURE, MECHANISM AND MATERIAL DESIGNS 被引量:3
12
作者 Mei Yulin Wang Xiaoming Department of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期200-209,共10页
Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining ... Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining vector level set models with gradient projectiontechnology, the level set method for topological optimization is extended to a topologicaloptimization problem with multi-constraints, multi-materials and multi-load cases. Meanwhile, anappropriate nonlinear speed, mapping is established in the tangential space of the activeconstraints for a fast convergence. Then the method is applied to structure designs, mechanism andmaterial designs by a number of benchmark examples. Finally, in order to further improvecomputational efficiency and overcome the difficulty that the level set method cannot generate newmaterial interfaces during the optimization process, the topological derivative analysis isincorporated into the level set method for topological optimization, and a topological derivativeand level set algorithm for topological optimization is proposed. 展开更多
关键词 Level set method Topology optimization Mean curvature flow Materialdesign Mechanism design topological derivative
在线阅读 下载PDF
Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
13
作者 Ya-Jie Zhang Chao-Long Li +3 位作者 Jia-Qi Luan Ming Zhao Ding-Shan Gao Pei-Li Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期287-294,共8页
Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the m... Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields. 展开更多
关键词 metasurface polarization conversion topology optimization ULTRA-BROADBAND
原文传递
Topological optimization of heterogeneous strain structures for computational design of ultra-sensitive strain sensors
14
作者 Weijuan Wang Ting Yui Wong +3 位作者 Minghao Guo Fangxin Zou Fuhong Chen Zhiwei Wang 《npj Flexible Electronics》 2025年第1期637-648,共12页
Heterogeneous strain engineering offers a promising approach for developing high-performance stretchable strain sensors,but the optimal strain distributions remain unexplored.Herein,we derive the optimal strain topolo... Heterogeneous strain engineering offers a promising approach for developing high-performance stretchable strain sensors,but the optimal strain distributions remain unexplored.Herein,we derive the optimal strain topology for achieving maximum sensitivities using Monte Carlo simulations,and identify the key sensitivity-regulating parameters,thus establishing a general computational design guideline.Mathematical analysis demonstrates that within the optimal topology,sensitivity is maximized by reducing the strain value of low-strain regions or increasing their area proportion.As proof of concept,patterned graphene strain sensors(PGSSs)featuring parameterized grooves are designed with their small strain values and proportions precisely modulated via finite element analysis.Adjusting these parameters enhances sensitivity by factors of~10.7 and 3.3,with the highest gauge factor reaching 25,600 at 100%strain.Furthermore,the PGSSs can effectively detect human body motions and gauge object dimensions when integrated with robot grippers.The computational framework exhibits applicability across different heterogeneous strain engineering methods. 展开更多
关键词 optimal strain distributions heterogeneous strain engineering reducing strai Monte Carlo simulations computational design guidelinemathematical analysis heterogeneous strain structures optimal strain topology topological optimization
原文传递
Micropore Design and Topological Optimization for Efficient Evaporation in Cylindrical Evaporators
15
作者 WEN Xiaoting MENG Tingting +3 位作者 SU Jin HU Guifu PAN Qinghui SHUAI Yong 《Journal of Thermal Science》 2025年第6期2046-2058,共13页
Solar-driven interfacial water evaporation technology offers a zero-carbon,sustainable solution for extracting clean water from seawater and wastewater,presenting an effective strategy to address the global water cris... Solar-driven interfacial water evaporation technology offers a zero-carbon,sustainable solution for extracting clean water from seawater and wastewater,presenting an effective strategy to address the global water crisis.This study has employed finite element simulation to investigate the solar interfacial evaporation process,elucidating the interactions between heat,water,and salt during evaporation.Additionally,the internal water channels of the evaporator are optimized and designed using topology optimization techniques.In this project,a cylindrical evaporator model with vertical micropores is developed from carbon-based polymer materials.The impact of pore diameter and spacing on the evaporation rate is analyzed,alongside the effects of thermal conductivity,solar radiation intensity,and ambient wind speed on the evaporator's performance.Simulations have revealed that with a pore diameter of 20μm and a spacing of 0.55 mm,the evaporator achieves the highest evaporation rate of 0.91 kg·m^(-2)·h^(-1).The findings indicate that smaller pore sizes substantially enhance the evaporation rate,while larger pore spacings initially increase,and then decrease the rate.Further optimization involves using 20μm-diameter round pores and adjusting the cross-sectional shapes of the pores based on topological configurations with a material volume factor of 0.5.The optimized structure demonstrates an evaporation rate of 2.91 kg·m^(-2)·h^(-1),representing a 219.78%increase over the unoptimized design.These optimized structures and simulation results provide valuable insights for future evaporator designs. 展开更多
关键词 solar interface evaporation topology optimization heat and mass transfer numerical simulation
原文传递
Isogeometric Analysis-Based Topological Optimization for Heterogeneous Parametric Porous Structures
16
作者 HU Chuanfeng HU Hui +1 位作者 LIN Hongwei YAN Jiacong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第1期29-52,共24页
Porous structures widely exist in nature and artifacts,which can be exploited to reduce structural weight and material usage or improve damage tolerance and energy absorption.In this study,the authors develop an appro... Porous structures widely exist in nature and artifacts,which can be exploited to reduce structural weight and material usage or improve damage tolerance and energy absorption.In this study,the authors develop an approach to design optimized porous structures with Triply Periodic Minimal Surfaces(TPMSs)in the framework of isogeometric analysis(IGA)-based topological optimization.In the developed method,by controlling the density distribution,the designed porous structures can achieve the optimal mechanical performance without increasing the usage of materials.First,the implicit functions of the TPMSs are adopted to design several types of porous elements parametrically.Second,to reduce the cost of computation,the authors propose an equivalent method to forecast the elastic modulus of these porous elements with different densities.Subsequently,the relationships of different porous elements between the elastic modulus and the relative density are constructed.Third,the IGA-based porous topological optimization is developed to obtain an optimal density distribution,which solves a volume constrained compliance minimization problem based on IGA.Finally,an optimum heterogeneous porous structure is generated based on the optimized density distribution.Experimental results demonstrate the effectiveness and efficiency of the proposed method. 展开更多
关键词 B-spline solid heterogeneous porous structure isogeometric analysis topological optimization triply periodic minimal surface
原文传递
Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables 被引量:10
17
作者 Hong-Ling Ye Wei-Wei Wang +1 位作者 Ning Chen Yun-Kang Sui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期899-911,共13页
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, conti... The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion. 展开更多
关键词 Topology optimization Buckling constraints Orthotropic material Plate/shell structure ICM method
在线阅读 下载PDF
Numerical study on flow and heat transfer characteristics of microchannel designed using topological optimizations method 被引量:7
18
作者 HU DingHua ZHANG ZhiWei LI Qiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第1期105-115,共11页
Microchannel has demonstrated advantages in the thermal management of integrated chip. In this study, the topology optimization method is applied for designing a topological microchannel to optimize the performances o... Microchannel has demonstrated advantages in the thermal management of integrated chip. In this study, the topology optimization method is applied for designing a topological microchannel to optimize the performances of both heat dissipation and pressure drop. To validate the performance of the topological structure, the flow and heat transfer characteristics of topological microchannel under non-uniform heating flux are numerically studied. The topological structure is designed to cool a heating area of 10 mm×10 mm with 4 hotspots. Heat flux is 40 W/cm^2 in the hotspot area, while it is only 15 W/cm^2 in the rest heating area. The results of heat dissipation performance and pressure drop are compared with those of conventional straight microchannel. Numerical result shows that, compared to the straight microchannel, the hotspot temperature and pressure drop of topological microchannel can be reduced by 4 and 0.6 k Pa, respectively, under the flow rate of 2.2×10^-4 kg/s. The coefficient of performance(COP) of topological microchannel can be 16.1% better than that of straight microchannel, which can be attributed to the effects of optimized bifurcation and confluence structural of topological microchannel. 展开更多
关键词 topology optimization MICROCHANNEL heat dissipation pressure drop HOTSPOT
原文传递
Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization
19
作者 ZHOU Yun-fei ZOU Lin-er +1 位作者 CHENG Yang-bing SHEN Yun 《中国光学(中英文)》 北大核心 2025年第6期1475-1483,共9页
Metalens technology has been applied extensively in miniaturized and integrated infrared imaging systems.However,due to the high phase dispersion of unit structures,metalens often exhibits chromatic aberration,making ... Metalens technology has been applied extensively in miniaturized and integrated infrared imaging systems.However,due to the high phase dispersion of unit structures,metalens often exhibits chromatic aberration,making broadband achromatic infrared imaging challenging to achieve.In this paper,six different unit structures based on chalcogenide glass are constructed,and their phase-dispersion parameters are analyzed to establish a database.On this basis,using chromatic aberration compensation and parameterized adjoint topology optimization,a broadband achromatic metalens with a numerical aperture of 0.5 is designed by arranging these six unit structures in the far-infrared band.Simulation results show that the metalens achieves near diffraction-limited focusing within the operating wavelength range of 9−11μm,demonstrating the good performance of achromatic aberration with flat focusing efficiency of 54%−58%across all wavelengths. 展开更多
关键词 metalens chalcogenide glass topology optimization high efficiency long wave infrared broadband operation
在线阅读 下载PDF
Systematic Benchmarking of Topology Optimization Methods Using Both Binary and Relaxed Forms of the Zhou-Rozvany Problem
20
作者 Jiye Zhou Yun-Fei Fu Kazem Ghabraie 《Computer Modeling in Engineering & Sciences》 2025年第6期3233-3251,共19页
Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers... Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods. 展开更多
关键词 Topology optimization Zhou-Rozvany problem BENCHMARKING binary forms relaxed forms power-law penalty heaviside smooth function
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部