The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and...The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges.展开更多
Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord....Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.展开更多
The Hengduan Mountains,situated on the southeastern edge of the Qinghai-Tibet Plateau,are the longest and widest north-south-oriented mountain range in China,exerting a significant influence on the ecological and geog...The Hengduan Mountains,situated on the southeastern edge of the Qinghai-Tibet Plateau,are the longest and widest north-south-oriented mountain range in China,exerting a significant influence on the ecological and geographical pattern.Understanding the topographic and geomorphological characteristics of the Hengduan Mountains is fundamental and crucial for research in related fields such as ecology,geography,and sustainability.In this study,Digital Elevation Model(DEM)data were utilized to extract and analyze the topography and geomorphology(TG)pattern.TG maps have been developed to quantitatively classify the TG types in the Hengduan Mountains by combining the five factors of elevation,slope,aspect,relief and landform.The spatial distribution and quantitative characteristics of these factors were mapped and investigated using geographic information systems.The results revealed that:(1)The Hengduan Mountains exhibit an elongated north-south distribution,with an average elevation of approximately 3746 m,an average slope of around 25°,and an average relief of about 266 m.(2)The Hengduan Mountains display significant elevation differences,with an overall high elevation,characterized by a trend of lower elevation in the east and higher elevation in the west,as well as irregular orientations of various aspects.(3)The 19 landform types were identified,the landform types of the Hengduan Mountains are primarily composed of low-relief high-mountains(42.0618%),low-relief mid-mountains(22.4624%),and high-elevation hills(20.5839%).The results of the study can provide data and information support for the ecology,environmental protection and sustainable development of the Hengduan Mountains.展开更多
Progressive modifications in submarine topography and shorelines drastically affect tidal dynamics in bays.This study examines the influence of topographic slope,bay length,and driving forces on tidal currents followi...Progressive modifications in submarine topography and shorelines drastically affect tidal dynamics in bays.This study examines the influence of topographic slope,bay length,and driving forces on tidal currents following land reclamation.Tidal equa-tions are analytically solved using infinite series,deriving expressions for tidal levels and currents in narrow bays with varying topog-raphy.Tidal levels,influenced by topographic variations,are characterized by amplitude and phase lag of their complex amplitude.These levels demonstrate high sensitivity to longitudinal slope variations but remain relatively stable under lateral slope changes.Un-der constant topographic slopes,even minor changes in bay length can drastically modify amplitude and phase lag,highlighting the sensitivity of tidal dynamics to geometric alterations.Tidal velocity notably increases with steeper longitudinal slopes and modestly rises with elevated lateral slopes.However,changes in longitudinal and lateral slopes do not considerably alter flow patterns.While external forces predominantly regulate tidal velocity with negligible effects on flow patterns,endogenous resistance influences veloci-ty but minimally impacts flow structure.These findings enhance the understanding of tidal responses to geometric and topographic changes,providing valuable guidance for land reclamation projects and coastal management strategies.展开更多
AIM:To evaluate the potential of artificial intelligence(AI)for automating corneal topography interpretation in orthokeratology patients,aiming to enhance diagnostic precision,efficiency,and clinical decision-making i...AIM:To evaluate the potential of artificial intelligence(AI)for automating corneal topography interpretation in orthokeratology patients,aiming to enhance diagnostic precision,efficiency,and clinical decision-making in myopia management.METHODS:The 1469 corneal topography images from 582 eyes of 326 myopic children treated with orthokeratology lenses over 47mo were collected.Each sample was categorized by decentration,treatment zone size,shape variation,and eye laterality.A multi-task AI model was developed to predict these parameters,with performance measured using area under curve(AUC),accuracy,and F1 scores.We compared AI-only,humanonly,and combined Human+AI approaches on a subset of 100 images.External validation with images from additional hospitals tested model generalizability.RESULTS:The model achieved high accuracy in eyeside prediction(AUC 0.95)and AUC values of 0.52-0.74 for decentration,treatment zone,and shape variation tasks.The combined Human+AI method outperformed AI-only and human-only approaches,achieving the highest accuracy(up to 87%)and fastest processing time(80ms).External validation confirmed robust performance in simple tasks,though accuracy was lower for complex classifications due to imaging variations.CONCLUSION:AI provides efficient routine corneal topography assessments,while complex cases benefit most from a Human+AI approach,particularly in scenarios requiring nuanced clinical interpretation.The model currently functions as an assistive tool.展开更多
Fog is a highly complex weather phenomenon influenced by numerous factors.This study investigated the impact of the Changbai Mountains’topography on the formation and development of spring fog in the Bohai Sea.From 1...Fog is a highly complex weather phenomenon influenced by numerous factors.This study investigated the impact of the Changbai Mountains’topography on the formation and development of spring fog in the Bohai Sea.From 12 to 14 May 2021,the Bohai region experienced a sea fog event.Utilizing Himawari-8 satellite data,ERA5 reanalysis dataset,land and sea station observations,the WRF model,a topography sensitivity experiment,and backward trajectory tracking,the influence of the Changbai Mountains’topography on the evolution of this sea fog event was assessed.Results indicated that the Changbai Mountains’topography significantly impacted the propagation and concentration of the sea fog through dual effects—namely,the Venturi Effect and Foehn Clearance Effect.Comparative simulations incorporating and excluding the Changbai Mountains revealed that its topography favored weak convergence(Venturi Effect)of low-level airflow over the Bohai Sea induced by a high-pressure system,promoting westward fog expansion.Additionally,the backward trajectory analysis further indicated that the Foehn Clearance Effect of the Changbai Mountains extended its influence far beyond the immediate lee side,contributing to significant changes in atmospheric conditions such as reductions in relative humidity and increases in potential temperature.The dry,warm foehn contributed to a reduction in the liquid water content,ultimately leading to the weakening or even dissipation of the sea fog in the region close to the Changbai Mountains.This study emphasizes the crucial role of the Changbai Mountains’topography in the development and evolution of fog,providing valuable insights for forecasting fog in regions with complex terrain.展开更多
The impact of cross-sectional topographic variability on the kinetic properties of granular flows has been underexplored,which hinders the understanding of the kinematics of rock avalanches.In this study,the throat co...The impact of cross-sectional topographic variability on the kinetic properties of granular flows has been underexplored,which hinders the understanding of the kinematics of rock avalanches.In this study,the throat contraction index(T)is introduced to quantify variations in throat topography,and 96 numerical simulation experiments with varying T and slope angles(δ)are conducted.The findings indicate that granular flows experience transient obstructions when traversing throat topographies,primarily due to the periodic formation and breaking of the arch structure.Observations suggest that the acceleration of velocity in the tails of granular flows is restrained by the throat region,potentially altering the dynamics of related geohazards.In this study,the impact of throat topography is quantitatively assessed,demonstrating a reduction in peak flowrates of granular materials by 20%-80% and extending the flowduration up to six times.The present study proposes the throat-induced hazard index(Φ)to evaluate the influenceof throat topography on the risk of rockslides and avalanches characterized by granular flows,which may provide insights for the design of mitigation structures in topographic regions.展开更多
In the generation and propagation of nonlinear Rossby solitary waves within the atmosphere and ocean,topography occupies a pivotal role.This paper focuses on elucidating the impact of topography on such Rossby solitar...In the generation and propagation of nonlinear Rossby solitary waves within the atmosphere and ocean,topography occupies a pivotal role.This paper focuses on elucidating the impact of topography on such Rossby solitary waves.Utilizing the perturbation expansion method and spatialtemporal transformations,we derive the Korteweg–de Vries and modified Korteweg–de Vries equation(Gardner equation)governing the amplitude of nonlinear Rossby waves.A fundamental issue addressed herein is a Sturm–Liouville-type ordinary differential equation characterized by variable coefficients and fixed boundary conditions.To numerically solve the derived Korteweg–de Vries and modified Korteweg–de Vries equations,we employ a physical-informed neural network.Both qualitative and quantitative analyses are conducted to discuss the influences of topography andβeffects,respectively.展开更多
Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed b...Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed based on the initial corneal information collected using the Placido disc.A corneal point cloud model was established in polar coordinates,and an interpolation algorithm was proposed to fill missing points of the local bicubic B-spline by searching control points in the selfdefined interpolation matrix.The grid interpolation of the point cloud information and the smooth imaging of the final topographic map were achieved by Delaunay triangulation and Gaussian kernel function smoothing.Experiment results show that the proposed interpolation algorithm has higher accuracy than previous algorithms.The mean absolute error between the measured diopter of the original detection and the reconstructed is less than 0.300 D,indicating that this algorithm is feasible.展开更多
The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the te...The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the textured roll and polished roll(TPR),the surface roughness of the strip is dramatically reduced,and the surface topographical anisotropy index is diminished to 30.9%of the initial strip.Comparing with the strip rolled using the ground roll in both passes(GGR),the elongation of TPR rolled strip is obviously improved,and the mechanical property anisotropy is greatly weakened.The anisotropy index of tensile strength and elongation are 42.58%and 52.59%of that of GGR rolled strip,which is mainly attributed to the significant decrease of the texture intensity of the strip by TPR process.The results indicate that TPR process can obtain the stainless steel ultra-thin strip with smooth and uniform surface topography and good mechanical properties.展开更多
AIM:To investigate the impact of preoperative anterior corneal topographic parameters on the morphology of the postoperative effective optical zone(EOZ)in patients undergoing keratorefractive lenticule extraction(KLEx...AIM:To investigate the impact of preoperative anterior corneal topographic parameters on the morphology of the postoperative effective optical zone(EOZ)in patients undergoing keratorefractive lenticule extraction(KLEx)and wavefront-guided LASIK(WG-LASIK).METHODS:This retrospective study included 310 eyes from patients who underwent either KLEx(via small incision lenticule extraction,171 eyes)or WG-LASIK(139 eyes).Patients were stratified into subgroups based on the median values of spherical equivalent(SE)and anterior corneal topographic parameters.Postoperative EOZ parameters were measured 1mo after surgery and compared across subgroups.Correlation analysis and multivariable linear regression analysis were performed to explore the associations between preoperative anterior corneal topographic parameters and EOZ parameters.RESULTS:A total of 310 eyes were included(KLEx:171 eyes from 88 patients;WG-LASIK:139 eyes from 82 patients).The mean age was 30.65±5.67y in the KLEx cohort and 29.06±5.94y in the WG-LASIK cohort.In the KLEx cohort,SE,preoperative mean keratometry(Km),steep keratometry(K2),and anterior corneal astigmatism(K2-K1)were positively correlated with the postoperative optical zone reduction ratio(RR=EOZ/planned optical zone×100%;all P<0.01).Multivariable regression identified SE[β=0.027,95%confidence interval(CI):0.022-0.032,P<0.001],Km(β=0.009,95%CI:0.002-0.016,P=0.014),and anterior corneal astigmatism(β=0.031,95%CI:0.013-0.049,P<0.001)as significant predictors of RR(R²=0.456,P<0.001).In the WG-LASIK cohort,SE was positively correlated with RR(P<0.01);K2 and anterior corneal astigmatism were positively correlated with both RR(P<0.05)and EOZ eccentricity(P<0.01).Multivariable regression showed SE(β=0.015,95%CI:0.007-0.023,P<0.001)and anterior corneal astigmatism(β=0.029,95%CI:0.012-0.047,P=0.001)were significant predictors of RR(R²=0.121,P<0.001).CONCLUSION:Preoperative anterior corneal topographic parameters,particularly anterior corneal astigmatism,significantly affect postoperative EOZ morphology in both KLEx and WG-LASIK.Additionally,Km is a predictor of EOZ reduction specifically in KLEx.展开更多
BACKGROUND Despite growing evidence on endoscopic full thickness resection(EFTR),data on segment-specific outcomes in real-world patients remain limited.AIM To investigate segment-specific outcomes of EFTR using a ful...BACKGROUND Despite growing evidence on endoscopic full thickness resection(EFTR),data on segment-specific outcomes in real-world patients remain limited.AIM To investigate segment-specific outcomes of EFTR using a full-thickness resection device(FTRD)for neoplastic colorectal lesions.METHODS In this multicenter,retrospective study,EFTR was conducted in unselected realworld patients referred to participating German centers after colonoscopy confirmed EFTR eligibility.The primary outcome was histologically complete resection(R0)of the lesion,including segment-specific outcomes and adverse events(AE).Additional efficacy and safety parameters were investigated by colonic topography for up to 30 days.RESULTS The analysis included 102 patients(64 males,38 females)with a median age of 70 years.EFTR via FTRD was technically successful in all patients.The R0 rate was 81.4%,segment-specifically ranging from 85.0%(rectum),84.6%(descending colon),84.0%(ascending colon),83.3%(cecum),and 76.5%(sigmoid colon)to 73.3%(transverse colon).Examination time was longer in proximal parts compared to the rectosigmoid(non-significant).Overall,33 patients(32.4%)experienced AE,including only one major complication(0.98%;perforation of sigmoid colon).Abdominal postsurgical pain(18.6%),hematochezia(9.8%),and hemoglobin decline(7.8%)were the most frequent minor complications.Transverse colon lesions had the numerically highest rate of AE,with 8 of 15 patients(53.3%)affected.CONCLUSION EFTR is efficacious for neoplastic colorectal lesions,though R0 rates vary by location.This may impact patient education,selection of the operator,and consideration of laparoscopy surgery.展开更多
New information and communication technologies have led to the emergence of new techniques in our daily lives. Indeed, in topography, a lightning development of new techniques and new devices has been noticed. This de...New information and communication technologies have led to the emergence of new techniques in our daily lives. Indeed, in topography, a lightning development of new techniques and new devices has been noticed. This development has given rise to a multitude of choices of devices and various classes of precision. This implies that the decision-makers have to study the adequate equipment and the appropriate technique according to the topographic task to be realized. The objective is not to compare GNSS and topographic techniques, but to point out the contribution of the Global Navigation Satelite System (GNSS) techniques of topographic work. Thus, a theoretical study with a critical eye on the scientific principle of calculating the third topographic dimension followed by a leveling campaign, Real Time Kinematic (RTK) surveys will be used in order to be able to compare and interpret the result from these campaigns. The study of the difference resulting from the practical campaigns will allow us to identify the contribution of GNSS technology.展开更多
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti...The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.展开更多
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi...Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.展开更多
Due to the strong penetrability,long-wavelength synthetic aperture radar(SAR)can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media.SAR tomography(TomoSAR)technology can resy...Due to the strong penetrability,long-wavelength synthetic aperture radar(SAR)can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media.SAR tomography(TomoSAR)technology can resynthesize aperture perpendicular to the slant-range direction and then obtain the tomographic profile consisting of power distribution of different heights,providing a powerful technical tool for reconstructing the three-dimensional structure of the penetrable ground objects.As an emerging technology,it is different from the traditional interferometric SAR(InSAR)technology and has advantages in reconstructing the three-dimensional structure of the illuminated media.Over the past two decades,many TomoSAR methods have been proposed to improve the vertical resolution,aiming to distinguish the locations of different scatters in the unit pixel.In order to cope with the forest mission of European Space Agency(ESA)that is designed to provide P-band SAR measurements to determine the amount of biomass and carbon stored in forests,it is necessary to systematically evaluate the performance of forest height and underlying topography inversion using TomoSAR technology.In this paper,we adopt three typical algorithms,namely,Capon,Multiple Signal Classification(MUSIC),and Compressed Sensing(CS),to evaluate the performance in forest height and underlying topography inversion.The P-band airborne full-polarization(FP)SAR data of LopèNational Park in the AfriSAR campaign implemented by ESA in 2016 is adopted to verify the experiment.Furthermore,we explore the effects of different baseline designs and filter methods on the reconstruction of the tomographic profile.The results show that a better tomographic profile can be obtained by using Hamming window filter and Capon algorithm in uniform baseline distribution and a certain number of acquisitions.Compared with LiDAR results,the root-mean-square error(RMSE)of forest height and underlying topography obtained by Capon algorithm is 2.17 m and 1.58 m,which performs the best among the three algorithms.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considerin...This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considering the different relief units was adopted. Woody vegetation was surveyed using a dendrometric approach. The results obtained show that the flora is dominated by a few species adapted to drought, such as Balanites aegyptiaca (L.) Del., Calotropis procera Ait. and Boscia senegalensis (Pers.). The distribution of this flora and the structure of the ligneous plants are linked to the topography. In the lowlands, the flora is more diversified and the ligneous plants reach their optimum level of development compared with the higher relief areas. In the lowlands, there are a few woody species which, in the past, were indicative of better climatic conditions. These are Anogeissus leiocarpus (DC.), Commiphora africana (A. Rich.), Feretia apodanthera Del., Loeseneriella africana (A. Smith), Mitragyna inermis (Willd.) and Sclerocarya birrea (A. Rich). It is important that their reintroduction into reforestation projects takes account of their edaphic preference.展开更多
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the...Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.展开更多
基金supported by the Guangdong Province Introduced Innovative R&D Team of Big Data-Mathematical Earth Sciences and Extreme Geological Events Team(grant number 2021ZT09H399)the National Natural Science Foundation of China(grant number 42430111,42050103).
文摘The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges.
文摘Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.
基金funded by the Yunnan Provincial Basic Research Joint Special Fund Project(2019FH001(-052))Cangshan Mountain Synthetic Scientific Expeditions Fund.
文摘The Hengduan Mountains,situated on the southeastern edge of the Qinghai-Tibet Plateau,are the longest and widest north-south-oriented mountain range in China,exerting a significant influence on the ecological and geographical pattern.Understanding the topographic and geomorphological characteristics of the Hengduan Mountains is fundamental and crucial for research in related fields such as ecology,geography,and sustainability.In this study,Digital Elevation Model(DEM)data were utilized to extract and analyze the topography and geomorphology(TG)pattern.TG maps have been developed to quantitatively classify the TG types in the Hengduan Mountains by combining the five factors of elevation,slope,aspect,relief and landform.The spatial distribution and quantitative characteristics of these factors were mapped and investigated using geographic information systems.The results revealed that:(1)The Hengduan Mountains exhibit an elongated north-south distribution,with an average elevation of approximately 3746 m,an average slope of around 25°,and an average relief of about 266 m.(2)The Hengduan Mountains display significant elevation differences,with an overall high elevation,characterized by a trend of lower elevation in the east and higher elevation in the west,as well as irregular orientations of various aspects.(3)The 19 landform types were identified,the landform types of the Hengduan Mountains are primarily composed of low-relief high-mountains(42.0618%),low-relief mid-mountains(22.4624%),and high-elevation hills(20.5839%).The results of the study can provide data and information support for the ecology,environmental protection and sustainable development of the Hengduan Mountains.
基金supported by the National Natural Sci-ence Foundation of China(No.U2106204)the Shanxi Water Conservancy Science and Technology Re-search and Extension Project(No.2023ZF19).
文摘Progressive modifications in submarine topography and shorelines drastically affect tidal dynamics in bays.This study examines the influence of topographic slope,bay length,and driving forces on tidal currents following land reclamation.Tidal equa-tions are analytically solved using infinite series,deriving expressions for tidal levels and currents in narrow bays with varying topog-raphy.Tidal levels,influenced by topographic variations,are characterized by amplitude and phase lag of their complex amplitude.These levels demonstrate high sensitivity to longitudinal slope variations but remain relatively stable under lateral slope changes.Un-der constant topographic slopes,even minor changes in bay length can drastically modify amplitude and phase lag,highlighting the sensitivity of tidal dynamics to geometric alterations.Tidal velocity notably increases with steeper longitudinal slopes and modestly rises with elevated lateral slopes.However,changes in longitudinal and lateral slopes do not considerably alter flow patterns.While external forces predominantly regulate tidal velocity with negligible effects on flow patterns,endogenous resistance influences veloci-ty but minimally impacts flow structure.These findings enhance the understanding of tidal responses to geometric and topographic changes,providing valuable guidance for land reclamation projects and coastal management strategies.
基金Supported by the National Natural Science Foundation of China(No.82201195).
文摘AIM:To evaluate the potential of artificial intelligence(AI)for automating corneal topography interpretation in orthokeratology patients,aiming to enhance diagnostic precision,efficiency,and clinical decision-making in myopia management.METHODS:The 1469 corneal topography images from 582 eyes of 326 myopic children treated with orthokeratology lenses over 47mo were collected.Each sample was categorized by decentration,treatment zone size,shape variation,and eye laterality.A multi-task AI model was developed to predict these parameters,with performance measured using area under curve(AUC),accuracy,and F1 scores.We compared AI-only,humanonly,and combined Human+AI approaches on a subset of 100 images.External validation with images from additional hospitals tested model generalizability.RESULTS:The model achieved high accuracy in eyeside prediction(AUC 0.95)and AUC values of 0.52-0.74 for decentration,treatment zone,and shape variation tasks.The combined Human+AI method outperformed AI-only and human-only approaches,achieving the highest accuracy(up to 87%)and fastest processing time(80ms).External validation confirmed robust performance in simple tasks,though accuracy was lower for complex classifications due to imaging variations.CONCLUSION:AI provides efficient routine corneal topography assessments,while complex cases benefit most from a Human+AI approach,particularly in scenarios requiring nuanced clinical interpretation.The model currently functions as an assistive tool.
基金jointly supported by the National Natural Science Foundation of China[grant number 42205009]the Open Grants of the State Key Laboratory of Severe Weather[grant number 2024LASWB23]+1 种基金the Collaborative Innovation Project for Marine Meteorological Science and Technology in the Bohai Rim Region[grant number QYXM202315]the Research and Development Project of Hebei Provincial Meteorological Bureau[grant number 22ky26]。
文摘Fog is a highly complex weather phenomenon influenced by numerous factors.This study investigated the impact of the Changbai Mountains’topography on the formation and development of spring fog in the Bohai Sea.From 12 to 14 May 2021,the Bohai region experienced a sea fog event.Utilizing Himawari-8 satellite data,ERA5 reanalysis dataset,land and sea station observations,the WRF model,a topography sensitivity experiment,and backward trajectory tracking,the influence of the Changbai Mountains’topography on the evolution of this sea fog event was assessed.Results indicated that the Changbai Mountains’topography significantly impacted the propagation and concentration of the sea fog through dual effects—namely,the Venturi Effect and Foehn Clearance Effect.Comparative simulations incorporating and excluding the Changbai Mountains revealed that its topography favored weak convergence(Venturi Effect)of low-level airflow over the Bohai Sea induced by a high-pressure system,promoting westward fog expansion.Additionally,the backward trajectory analysis further indicated that the Foehn Clearance Effect of the Changbai Mountains extended its influence far beyond the immediate lee side,contributing to significant changes in atmospheric conditions such as reductions in relative humidity and increases in potential temperature.The dry,warm foehn contributed to a reduction in the liquid water content,ultimately leading to the weakening or even dissipation of the sea fog in the region close to the Changbai Mountains.This study emphasizes the crucial role of the Changbai Mountains’topography in the development and evolution of fog,providing valuable insights for forecasting fog in regions with complex terrain.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307194 and 42120104002)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2024QNRC001).
文摘The impact of cross-sectional topographic variability on the kinetic properties of granular flows has been underexplored,which hinders the understanding of the kinematics of rock avalanches.In this study,the throat contraction index(T)is introduced to quantify variations in throat topography,and 96 numerical simulation experiments with varying T and slope angles(δ)are conducted.The findings indicate that granular flows experience transient obstructions when traversing throat topographies,primarily due to the periodic formation and breaking of the arch structure.Observations suggest that the acceleration of velocity in the tails of granular flows is restrained by the throat region,potentially altering the dynamics of related geohazards.In this study,the impact of throat topography is quantitatively assessed,demonstrating a reduction in peak flowrates of granular materials by 20%-80% and extending the flowduration up to six times.The present study proposes the throat-induced hazard index(Φ)to evaluate the influenceof throat topography on the risk of rockslides and avalanches characterized by granular flows,which may provide insights for the design of mitigation structures in topographic regions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12462021,12102205,12262025)the Central Guidance for Local Scientific and Technological Development Funding Projects(Grant No.2024ZY0117)+2 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT23098)the Scientific Starting and the Innovative Research Team in the Universities of Inner Mongolia Autonomous Region of China(Grant No.NMGIRT2208)the National College Students Innovation and Entrepreneurship Training Program(Grant No.202410126024)。
文摘In the generation and propagation of nonlinear Rossby solitary waves within the atmosphere and ocean,topography occupies a pivotal role.This paper focuses on elucidating the impact of topography on such Rossby solitary waves.Utilizing the perturbation expansion method and spatialtemporal transformations,we derive the Korteweg–de Vries and modified Korteweg–de Vries equation(Gardner equation)governing the amplitude of nonlinear Rossby waves.A fundamental issue addressed herein is a Sturm–Liouville-type ordinary differential equation characterized by variable coefficients and fixed boundary conditions.To numerically solve the derived Korteweg–de Vries and modified Korteweg–de Vries equations,we employ a physical-informed neural network.Both qualitative and quantitative analyses are conducted to discuss the influences of topography andβeffects,respectively.
基金Shanghai Science and Technology Program,China (No.20DZ2251400)。
文摘Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed based on the initial corneal information collected using the Placido disc.A corneal point cloud model was established in polar coordinates,and an interpolation algorithm was proposed to fill missing points of the local bicubic B-spline by searching control points in the selfdefined interpolation matrix.The grid interpolation of the point cloud information and the smooth imaging of the final topographic map were achieved by Delaunay triangulation and Gaussian kernel function smoothing.Experiment results show that the proposed interpolation algorithm has higher accuracy than previous algorithms.The mean absolute error between the measured diopter of the original detection and the reconstructed is less than 0.300 D,indicating that this algorithm is feasible.
基金supported by the National Natural Science Foundation of China(Nos.51974196,52275361,and 52305406)the Key Projects of the National Natural Science Foundation of China(No.U22A20188)the Special Projects of the Central Government in Guidance of Local Science and Technology Development(YDZX20191400002149).
文摘The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the textured roll and polished roll(TPR),the surface roughness of the strip is dramatically reduced,and the surface topographical anisotropy index is diminished to 30.9%of the initial strip.Comparing with the strip rolled using the ground roll in both passes(GGR),the elongation of TPR rolled strip is obviously improved,and the mechanical property anisotropy is greatly weakened.The anisotropy index of tensile strength and elongation are 42.58%and 52.59%of that of GGR rolled strip,which is mainly attributed to the significant decrease of the texture intensity of the strip by TPR process.The results indicate that TPR process can obtain the stainless steel ultra-thin strip with smooth and uniform surface topography and good mechanical properties.
文摘AIM:To investigate the impact of preoperative anterior corneal topographic parameters on the morphology of the postoperative effective optical zone(EOZ)in patients undergoing keratorefractive lenticule extraction(KLEx)and wavefront-guided LASIK(WG-LASIK).METHODS:This retrospective study included 310 eyes from patients who underwent either KLEx(via small incision lenticule extraction,171 eyes)or WG-LASIK(139 eyes).Patients were stratified into subgroups based on the median values of spherical equivalent(SE)and anterior corneal topographic parameters.Postoperative EOZ parameters were measured 1mo after surgery and compared across subgroups.Correlation analysis and multivariable linear regression analysis were performed to explore the associations between preoperative anterior corneal topographic parameters and EOZ parameters.RESULTS:A total of 310 eyes were included(KLEx:171 eyes from 88 patients;WG-LASIK:139 eyes from 82 patients).The mean age was 30.65±5.67y in the KLEx cohort and 29.06±5.94y in the WG-LASIK cohort.In the KLEx cohort,SE,preoperative mean keratometry(Km),steep keratometry(K2),and anterior corneal astigmatism(K2-K1)were positively correlated with the postoperative optical zone reduction ratio(RR=EOZ/planned optical zone×100%;all P<0.01).Multivariable regression identified SE[β=0.027,95%confidence interval(CI):0.022-0.032,P<0.001],Km(β=0.009,95%CI:0.002-0.016,P=0.014),and anterior corneal astigmatism(β=0.031,95%CI:0.013-0.049,P<0.001)as significant predictors of RR(R²=0.456,P<0.001).In the WG-LASIK cohort,SE was positively correlated with RR(P<0.01);K2 and anterior corneal astigmatism were positively correlated with both RR(P<0.05)and EOZ eccentricity(P<0.01).Multivariable regression showed SE(β=0.015,95%CI:0.007-0.023,P<0.001)and anterior corneal astigmatism(β=0.029,95%CI:0.012-0.047,P=0.001)were significant predictors of RR(R²=0.121,P<0.001).CONCLUSION:Preoperative anterior corneal topographic parameters,particularly anterior corneal astigmatism,significantly affect postoperative EOZ morphology in both KLEx and WG-LASIK.Additionally,Km is a predictor of EOZ reduction specifically in KLEx.
文摘BACKGROUND Despite growing evidence on endoscopic full thickness resection(EFTR),data on segment-specific outcomes in real-world patients remain limited.AIM To investigate segment-specific outcomes of EFTR using a full-thickness resection device(FTRD)for neoplastic colorectal lesions.METHODS In this multicenter,retrospective study,EFTR was conducted in unselected realworld patients referred to participating German centers after colonoscopy confirmed EFTR eligibility.The primary outcome was histologically complete resection(R0)of the lesion,including segment-specific outcomes and adverse events(AE).Additional efficacy and safety parameters were investigated by colonic topography for up to 30 days.RESULTS The analysis included 102 patients(64 males,38 females)with a median age of 70 years.EFTR via FTRD was technically successful in all patients.The R0 rate was 81.4%,segment-specifically ranging from 85.0%(rectum),84.6%(descending colon),84.0%(ascending colon),83.3%(cecum),and 76.5%(sigmoid colon)to 73.3%(transverse colon).Examination time was longer in proximal parts compared to the rectosigmoid(non-significant).Overall,33 patients(32.4%)experienced AE,including only one major complication(0.98%;perforation of sigmoid colon).Abdominal postsurgical pain(18.6%),hematochezia(9.8%),and hemoglobin decline(7.8%)were the most frequent minor complications.Transverse colon lesions had the numerically highest rate of AE,with 8 of 15 patients(53.3%)affected.CONCLUSION EFTR is efficacious for neoplastic colorectal lesions,though R0 rates vary by location.This may impact patient education,selection of the operator,and consideration of laparoscopy surgery.
文摘New information and communication technologies have led to the emergence of new techniques in our daily lives. Indeed, in topography, a lightning development of new techniques and new devices has been noticed. This development has given rise to a multitude of choices of devices and various classes of precision. This implies that the decision-makers have to study the adequate equipment and the appropriate technique according to the topographic task to be realized. The objective is not to compare GNSS and topographic techniques, but to point out the contribution of the Global Navigation Satelite System (GNSS) techniques of topographic work. Thus, a theoretical study with a critical eye on the scientific principle of calculating the third topographic dimension followed by a leveling campaign, Real Time Kinematic (RTK) surveys will be used in order to be able to compare and interpret the result from these campaigns. The study of the difference resulting from the practical campaigns will allow us to identify the contribution of GNSS technology.
基金funded jointly by the National Nature Science Funds of China(No.42274010)the Fundamental Research Funds for the Central Universities(Nos.2023000540,2023000407).
文摘The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
基金Supported by the National Key Research and Development Program of China(No.2022YFE0204600)the National Natural Science Foundation for Young Scientists of China(No.41906157)。
文摘Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.
基金supported by ESA-MOST Dragon Programme 5[grant number 59332].
文摘Due to the strong penetrability,long-wavelength synthetic aperture radar(SAR)can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media.SAR tomography(TomoSAR)technology can resynthesize aperture perpendicular to the slant-range direction and then obtain the tomographic profile consisting of power distribution of different heights,providing a powerful technical tool for reconstructing the three-dimensional structure of the penetrable ground objects.As an emerging technology,it is different from the traditional interferometric SAR(InSAR)technology and has advantages in reconstructing the three-dimensional structure of the illuminated media.Over the past two decades,many TomoSAR methods have been proposed to improve the vertical resolution,aiming to distinguish the locations of different scatters in the unit pixel.In order to cope with the forest mission of European Space Agency(ESA)that is designed to provide P-band SAR measurements to determine the amount of biomass and carbon stored in forests,it is necessary to systematically evaluate the performance of forest height and underlying topography inversion using TomoSAR technology.In this paper,we adopt three typical algorithms,namely,Capon,Multiple Signal Classification(MUSIC),and Compressed Sensing(CS),to evaluate the performance in forest height and underlying topography inversion.The P-band airborne full-polarization(FP)SAR data of LopèNational Park in the AfriSAR campaign implemented by ESA in 2016 is adopted to verify the experiment.Furthermore,we explore the effects of different baseline designs and filter methods on the reconstruction of the tomographic profile.The results show that a better tomographic profile can be obtained by using Hamming window filter and Capon algorithm in uniform baseline distribution and a certain number of acquisitions.Compared with LiDAR results,the root-mean-square error(RMSE)of forest height and underlying topography obtained by Capon algorithm is 2.17 m and 1.58 m,which performs the best among the three algorithms.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
文摘This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considering the different relief units was adopted. Woody vegetation was surveyed using a dendrometric approach. The results obtained show that the flora is dominated by a few species adapted to drought, such as Balanites aegyptiaca (L.) Del., Calotropis procera Ait. and Boscia senegalensis (Pers.). The distribution of this flora and the structure of the ligneous plants are linked to the topography. In the lowlands, the flora is more diversified and the ligneous plants reach their optimum level of development compared with the higher relief areas. In the lowlands, there are a few woody species which, in the past, were indicative of better climatic conditions. These are Anogeissus leiocarpus (DC.), Commiphora africana (A. Rich.), Feretia apodanthera Del., Loeseneriella africana (A. Smith), Mitragyna inermis (Willd.) and Sclerocarya birrea (A. Rich). It is important that their reintroduction into reforestation projects takes account of their edaphic preference.
基金The National Key R&D Program of China under contract Nos 2022YFC3003800,2020YFC1521700 and 2020YFC1521705the National Natural Science Foundation of China under contract No.41830540+3 种基金the Open Fund of the East China Coastal Field Scientific Observation and Research Station of the Ministry of Natural Resources under contract No.OR-SECCZ2022104the Deep Blue Project of Shanghai Jiao Tong University under contract No.SL2020ZD204the Special Funding Project for the Basic Scientific Research Operation Expenses of the Central Government-Level Research Institutes of Public Interest of China under contract No.SZ2102the Zhejiang Provincial Project under contract No.330000210130313013006。
文摘Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.