Y9420 Gear Chamfering Machine is ahigh efficiency machine tool designedby the Chongqing Machine ToolsWorks to meet market demand. The machineemploys the principle of cool extrusion anduses a special chamfering tool wh...Y9420 Gear Chamfering Machine is ahigh efficiency machine tool designedby the Chongqing Machine ToolsWorks to meet market demand. The machineemploys the principle of cool extrusion anduses a special chamfering tool which drivesthe work piece to rotate and achievechamfering. It features no tool tracks and noburr on the ends. Multiple cutters can beused to process cluster gears, and thechamfering can be realized on either oneside of the tooth or on both. It is an idealpiece of equipment for automobiles, machinetools and gears manufacture to chamfer anddeburr disk type gears, spur and helical shaftgears and cluster gears.展开更多
Electrochemical trepanning(ECTr)is an effective electrochemical machining(ECM)technique that can be used to manufacture the integral components of aero-engine compressors.This study focused on the dynamic evolution of...Electrochemical trepanning(ECTr)is an effective electrochemical machining(ECM)technique that can be used to manufacture the integral components of aero-engine compressors.This study focused on the dynamic evolution of ECTr for production of inner blisks(bladed disks)with a special chamfer structure at blade tip.Due to the existence of chamfer,the ECTr process of inner blades is in a non-equilibrium state during the early stages,and the physical field changes in the machining gap are complex,making it difficult to predict the forming process.In this paper,a dynamic evolution model(DEM)of inner blade ECTr with a special chamfer at blade tip structure is proposed,and an ECTr multi-physical fields simulation study was carried out.The evolution of the chamfer at blade tip was analyzed and data related to chamfer were predicted based on the dependence of anode boundary properties with machining time and feed rate.In addition,the dis-tributions of current density,electrolyte flow rate,bubble volume fraction,temperature rise,and electrolyte conductivity in the machining area at different times were obtained by combining them with the multi-physical fields simulation results.Subsequently,a series of ECTr experiments were conducted,in which,as the feed rate increased,the surface quality and machining accuracy of the inner blades were improved.Compared with the simulation results,the error in machining accu-racy of the chamfer profile is controlled within±2%,and the machining accuracy of the blade full profile was controlled within±0.2 mm,indicating that the model proposed in this study was effec-tive in predicting the evolution of inner blades ECTr with chamfer structures at blade tip.展开更多
The sloshing in a tank with a specific geometric shape containing fluid was modeled numerically to reduce its effects by applying a porous medium to the tank wall.The thickness and position of the porous layer and the...The sloshing in a tank with a specific geometric shape containing fluid was modeled numerically to reduce its effects by applying a porous medium to the tank wall.The thickness and position of the porous layer and the geometric shape of the tank were investigated as the main parameters to select an optimal approach to reduce the effects of sloshing.Different fluid tank filling percentages(H_(w)/H_(tot)) were evaluated.Results indicate that performance at H_(w)/H_(tot)=0.33 and two tank modes with and without a porous environment layer have the greatest impact on reducing sloshing.A thickness of 30 cm and placement on the side walls are determined to be the ideal thickness and location of the porous layer.A porous layer with a thickness(t)relative to the tank length at the middle(L_(m)),t L_(m)=0.1 applied to the side walls of the tank effectively reduces the pressure by 65%.This study provided suggestions for the aspect ratio of a chamfered tank designed against sloshing.展开更多
In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system ...In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system composed of a substrate and three film layers.The thermal stress distribution inside the structure was calculated by the finite element method,revealing significant thermal stress differences between the layers.This is mainly due to the mismatch of the coefficient of thermal expansion between materials.Different materials respond differently to changes in external temperature,leading to compression between layers.There are obvious thermal stress concentration points at the corners of the base layer and the transition layer,which is due to the sudden change of the shape at the geometric section of the structure,resulting in a sudden increase in local stress.To address this issue,we chamfered the substrate and added an intermediate layer between the substrate and the transition layer to assess whether these modifications could reduce or eliminate the thermal stress concentration points and extend the service life of the multilayer structure.The results indicate that chamfering and adding the intermediate layer effectively reduce stress discontinuities and mitigate thermal stress concentration points,thereby improving interlayer bonding strength.展开更多
文摘Y9420 Gear Chamfering Machine is ahigh efficiency machine tool designedby the Chongqing Machine ToolsWorks to meet market demand. The machineemploys the principle of cool extrusion anduses a special chamfering tool which drivesthe work piece to rotate and achievechamfering. It features no tool tracks and noburr on the ends. Multiple cutters can beused to process cluster gears, and thechamfering can be realized on either oneside of the tooth or on both. It is an idealpiece of equipment for automobiles, machinetools and gears manufacture to chamfer anddeburr disk type gears, spur and helical shaftgears and cluster gears.
基金the National Nature Science Foundation of China (52275435)the National Natural Science Foundation of China for Creative Research Groups (51921003)the National Science and Technology Major Project (2017-VII-0004-0097).
文摘Electrochemical trepanning(ECTr)is an effective electrochemical machining(ECM)technique that can be used to manufacture the integral components of aero-engine compressors.This study focused on the dynamic evolution of ECTr for production of inner blisks(bladed disks)with a special chamfer structure at blade tip.Due to the existence of chamfer,the ECTr process of inner blades is in a non-equilibrium state during the early stages,and the physical field changes in the machining gap are complex,making it difficult to predict the forming process.In this paper,a dynamic evolution model(DEM)of inner blade ECTr with a special chamfer at blade tip structure is proposed,and an ECTr multi-physical fields simulation study was carried out.The evolution of the chamfer at blade tip was analyzed and data related to chamfer were predicted based on the dependence of anode boundary properties with machining time and feed rate.In addition,the dis-tributions of current density,electrolyte flow rate,bubble volume fraction,temperature rise,and electrolyte conductivity in the machining area at different times were obtained by combining them with the multi-physical fields simulation results.Subsequently,a series of ECTr experiments were conducted,in which,as the feed rate increased,the surface quality and machining accuracy of the inner blades were improved.Compared with the simulation results,the error in machining accu-racy of the chamfer profile is controlled within±2%,and the machining accuracy of the blade full profile was controlled within±0.2 mm,indicating that the model proposed in this study was effec-tive in predicting the evolution of inner blades ECTr with chamfer structures at blade tip.
文摘The sloshing in a tank with a specific geometric shape containing fluid was modeled numerically to reduce its effects by applying a porous medium to the tank wall.The thickness and position of the porous layer and the geometric shape of the tank were investigated as the main parameters to select an optimal approach to reduce the effects of sloshing.Different fluid tank filling percentages(H_(w)/H_(tot)) were evaluated.Results indicate that performance at H_(w)/H_(tot)=0.33 and two tank modes with and without a porous environment layer have the greatest impact on reducing sloshing.A thickness of 30 cm and placement on the side walls are determined to be the ideal thickness and location of the porous layer.A porous layer with a thickness(t)relative to the tank length at the middle(L_(m)),t L_(m)=0.1 applied to the side walls of the tank effectively reduces the pressure by 65%.This study provided suggestions for the aspect ratio of a chamfered tank designed against sloshing.
基金the support of the National Natural Science Foundation of China(Grant Nos.51606158,11604311 and 12074151)the Guangxi Science and Technology Base and Talent Special Project(Grant No.AD21075009)+2 种基金the Sichuan Science and Technology Program(Grant No.2021JDRC0022)the Open Fund of the Key Laboratory for Metallurgical Equipment and Control Technology of Ministry of Education in Wuhan University of Science and Technology,People's Republic of China(Grant Nos.MECOF2022B01 and MECOF2023B04)the Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(Grant No.DH202321)。
文摘In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system composed of a substrate and three film layers.The thermal stress distribution inside the structure was calculated by the finite element method,revealing significant thermal stress differences between the layers.This is mainly due to the mismatch of the coefficient of thermal expansion between materials.Different materials respond differently to changes in external temperature,leading to compression between layers.There are obvious thermal stress concentration points at the corners of the base layer and the transition layer,which is due to the sudden change of the shape at the geometric section of the structure,resulting in a sudden increase in local stress.To address this issue,we chamfered the substrate and added an intermediate layer between the substrate and the transition layer to assess whether these modifications could reduce or eliminate the thermal stress concentration points and extend the service life of the multilayer structure.The results indicate that chamfering and adding the intermediate layer effectively reduce stress discontinuities and mitigate thermal stress concentration points,thereby improving interlayer bonding strength.