As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,qu...As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,quantum-enhanced imaging can achieve ultra-high resolution,ultra-sensitive detection,and anti-interference imaging.Here,we introduce a quantum-enhanced scanning microscope under illumination of an entangled NOON state in polarization.For the phase imager with NOON states,we propose a simple four-basis projection method to replace the four-step phase-shifting method.We have achieved the phase imaging of micrometer-sized birefringent samples and biological cell specimens,with sensitivity close to the Heisenberg limit.The visibility of transmittance-based imaging shows a great enhancement for NOON states.Besides,we also demonstrate that the scanning imaging with NOON states enables the spatial resolution enhancement of√N compared with classical measurement.Our imaging method may provide some reference for the practical application of quantum imaging and is expected to promote the development of microscopic detection.展开更多
基金supported by he National Natural Science Foundation of China(Grant Nos.12304359,12304398,12404382,12234009,12274215,and 12427808)the China Postdoctoral Science Foundation(Grant No.2023M731611)+4 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB717)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301400)Key R&D Program of Jiangsu Province(Grant No.BE2023002)Natural Science Foundation of Jiangsu Province(Grant Nos.BK20220759 and BK20233001)Program for Innovative Talents and Entrepreneurs in Jiangsu,and Key R&D Program of Guangdong Province(Grant No.2020B0303010001).
文摘As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,quantum-enhanced imaging can achieve ultra-high resolution,ultra-sensitive detection,and anti-interference imaging.Here,we introduce a quantum-enhanced scanning microscope under illumination of an entangled NOON state in polarization.For the phase imager with NOON states,we propose a simple four-basis projection method to replace the four-step phase-shifting method.We have achieved the phase imaging of micrometer-sized birefringent samples and biological cell specimens,with sensitivity close to the Heisenberg limit.The visibility of transmittance-based imaging shows a great enhancement for NOON states.Besides,we also demonstrate that the scanning imaging with NOON states enables the spatial resolution enhancement of√N compared with classical measurement.Our imaging method may provide some reference for the practical application of quantum imaging and is expected to promote the development of microscopic detection.