Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The r...Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.展开更多
According to the structure of the hohl schaft kegel(HSK) tooling system and its working principle, a mechanical model of the HSK tooling system is established. Major factors influencing the stiffness of the system a...According to the structure of the hohl schaft kegel(HSK) tooling system and its working principle, a mechanical model of the HSK tooling system is established. Major factors influencing the stiffness of the system are analyzed and the relationship between the load and the manufacturing quality is obtained. The basic rule of the stiffness variation is presented and the theoretical analysis is in a good agreement with experimental results. The dynamic stiffness must also be considered to evaluate the performance of the tooling system besides the staticstiffness. Finally, the selecting principles of the HSK types are proposed and their optimum operating conditions are established.展开更多
Thermal fatigue and high temperature wear are the two principle failure mechanisms for thixoforming dies. Samples of Inconel 617 and Stellite 6 alloys were submitted to thermal cycling under conditions which approxima...Thermal fatigue and high temperature wear are the two principle failure mechanisms for thixoforming dies. Samples of Inconel 617 and Stellite 6 alloys were submitted to thermal cycling under conditions which approximate thixoforming of steels and to sliding wear tests at 750 ℃. The experimental results thus obtained were compared with those of the X32CrMoV33 hot work tool steel. The Inconel 617 and Stellite 6 samples are much more resistant to oxidation and to softening than the hot work tool steel, providing a superior resistance to thermal fatigue cracking. The wear resistance of the Inconel 617 and Stellite 6 alloys at 750 ℃ is also markedly superior. The adhesive oxides growing slowly on Inconel 617 and Stellite 6 alloys sustain the wear action without spalling and are claimed to be responsible for the superior wear resistance of these alloys at 750 ℃.展开更多
The present work compares microstructures of hot work steels made by different processes, that is, by sprayforming,by casting, and a commercially supplied H13 steel. Material benefits are recognized by sprayforming ho...The present work compares microstructures of hot work steels made by different processes, that is, by sprayforming,by casting, and a commercially supplied H13 steel. Material benefits are recognized by sprayforming hot working tools such as die inserts for hot forging. The sprayformed hot work steels present a fine and homogeneous microstructure,which implies that, at a similar toughness level, the sprayformed steel can be higher alloyed, so that the thermal fatigue and wear resistance at elevated temperatures can be improved. A series of steels with higher vanadium content than commercial hot work steels are developed. There are no segregation and carbide network problems usually encountered in conventional ingot/forging processed high-vanadium steels. Microstructure and hardness of the new sprayformed steels are studied under different heat treatment conditions. It is justified that these sprayformed steels can be directly used for tooling without high temperature hardening. Sprayforming the tool steels onto a precision ceramic mould is demonstrated to extend the technoeconomical benefits, so that a net shape production tool can be rapidly made.Features of the rapid tooling process are also discussed.展开更多
Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<φs<1), which involves the processing of alloys in the semi-solid state.Tooling has to be adapted to this particular process to b...Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<φs<1), which involves the processing of alloys in the semi-solid state.Tooling has to be adapted to this particular process to benefit shear thinning and thixotropic behaviour of such semi-solid material.Tooling parameters, such as the forming speed and tool temperature, have to be accurately controlled because of their influence on thermal exchanges between material flow and tool.These thermal exchanges influence the high-cracking tendency and the rheology of the semi-solid material during forming, which affects parts properties and therefore their quality.Extrusion tests show how thermal exchanges influence quality of thixoforged parts made of 7075 aluminium alloys at high solid fraction by modifying process parameters like forming speed, tool temperature and tool thermal protector.Thus an optimum in terms of thermal exchanges has to be found between surface quality and mechanical properties of the part.A direct application is the evaluation of surface quality of thixoforged thin wall parts made of 7075 aluminium alloy.展开更多
X32CrMoV33 hot work tool steel samples coated with AlTiN and AlTiON were submitted to thermal cycling under conditions that approximate thixoforming of steels and to sliding wear tests at 750 ℃,measured to be the cav...X32CrMoV33 hot work tool steel samples coated with AlTiN and AlTiON were submitted to thermal cycling under conditions that approximate thixoforming of steels and to sliding wear tests at 750 ℃,measured to be the cavity surface temperature shortly after the steel slurry is forced into the thixoforming die.AlTiN and AlTiON coatings provide adequate protection against oxidation of the tool steel substrate,but fail to avoid thermal fatigue cracking.This is attributed to the extensive softening of the substrate,the thermal expansion mismatch between the hot work tool steel and the coatings and residual compressive stresses inherited from the deposition process.The impact of AlTiN and AlTiON coatings on the high temperature wear resistance,on the other hand,is favourable.The improved wear resistance is attributed to the stable,protective surface oxide films.展开更多
Rapid tooling technique based on the sterelithograph prototype is investigated. The epoxy tooling technological process was elucidated. It is analyzed in detail that the epoxy resin formula is easy to cast, curing pro...Rapid tooling technique based on the sterelithograph prototype is investigated. The epoxy tooling technological process was elucidated. It is analyzed in detail that the epoxy resin formula is easy to cast, curing process, and release agents. The transitional plaster model is also proposed. The mold to encrust mutual.inductors with epoxy and mold to inject plastic soapboxes was made with the technique The tooling needs very little time and cost, for the process is only to achieve the nice replica of the prototype. It is benefit for the trial and small batch of production.展开更多
The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combinat...The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combination is the successful model or patted creating using the RP technology.Significantly reduced lead-time, shortened learns curve, lowered revision changes cost and eliminatedor reduced mold polishing are the consequent results. high quality Electrical Discharge Machining(EDM) electrodes are sometimes difficult to be manufactured rapidly and are very time-consumingby conventional methods, even using Computer Numerical Control (CNC) machines. Abradingprovides a simple way to create etuemely detailed and complex electrode to make molds in toolingmaking industries. Integration with the rapid development of the Rapid Prototyping & Manufacturing(RP&M) technology, the rapid electrode abrading process has been regarded as one of the majorbreakthrough in tooling making technology.展开更多
In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and pro...In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.展开更多
2024年日本机床展览会(JIMTOF2024)于2024年11月5~10日在东京Tokyo Big Sight举办,展出面积118540平方米。展会以“技术传承提供无限可能(Technologies passed down to the future offer unlimited possibilities)”为主题。
本文采用的着色Petri网(Colored Petri Nets,CPN)是一种基于模型检测法的自动化建模技术,它引入了"颜色集"的概念,以扩展Petri网的表达能力。该技术利用着色Petri网及其配套的建模工具CPN Tools对安全协议进行建模,能够使得...本文采用的着色Petri网(Colored Petri Nets,CPN)是一种基于模型检测法的自动化建模技术,它引入了"颜色集"的概念,以扩展Petri网的表达能力。该技术利用着色Petri网及其配套的建模工具CPN Tools对安全协议进行建模,能够使得模型实现图形化和层次化,其内置的状态空间分析工具及CPN ML语言,能够高效地协助分析人员获取必要数据。本文以经典的密钥交换协议TMN为例,运用CPN方法对其进行形式化分析,成功识别出攻击者可能利用的攻击路径,并验证了协议中存在的安全漏洞。针对这些漏洞,本文提出了一种改进方法,经过验证,证实了该改进方法的有效性。展开更多
A rapid wax injection tool of a gearbox shift fork was designed, simulated, and manufactured using rapid prototyping and rapid tooling technology to save time and cost of producing wax models used for the investment c...A rapid wax injection tool of a gearbox shift fork was designed, simulated, and manufactured using rapid prototyping and rapid tooling technology to save time and cost of producing wax models used for the investment casting process. CAE simulation softwares, in particular, MoldFlow, are used to get wax injection moulding parameters such as filling parameters, temperature profiles, freeze time, speed, and pressure. The results of this research were compared with conventional wax model production methods. The criteria of such comparison were based upon parameters such as time, cost, and other related characteristics, which resulted in saving of 50% in time and 60% in cost. In this research, design, assembly, and wax injection operation of the wax tool took 10 days. Considering the fact that wax melting temperature is as low as 70℃ and injection pressure of 0.5 MPa, the tool suffers no damage due to the thermal and pressure stresses, leading to the mass production of wax models.展开更多
Background There is scarce data about comparisons between geriatric assessment tools in patients with aortic stenosis(AS).We aimed to describe the geriatric profile of patients with AS undergoing transcatheter aortic ...Background There is scarce data about comparisons between geriatric assessment tools in patients with aortic stenosis(AS).We aimed to describe the geriatric profile of patients with AS undergoing transcatheter aortic valve implantation(TAVI)and to analyze the ability of different tools for predicting clinical outcomes in this context.Methods This was a single center retrospective registry including patients with AS undergoing TAVI and surviving to hospital discharge.The primary endpoint was all-cause mortality or need for urgent readmission one year after TAVI.Results A total of 377 patients were included(mean age of 80.4 years).Most patients were independent or mildly dependent,with an optimal cognitive status.The proportion of frailty ranged from 17.6%to 49.8%.A total of 20 patients(5.3%)died and 110/377 patients(29.2%)died or were readmitted during follow up.Overall,most components of the geriatric assessment showed an association with clinical outcomes.Disability for instrumental activities showed a significant association with mortality and a strong association with the rate of mortality or readmission.The association between frailty and clinical outcomes was higher for short physical performance battery(SPPB),essential frailty toolset(EFT)and the frailty index based on comprehensive geriatric assessment(IF-VIG)and lower for Fried criteria and FRAIL scale.Conclusions AS patients from this series presented a good physical performance,optimal cognitive status and a reasonably low prevalence of frailty.The best predictive ability was observed for disability for instrumental activities and frailty as measured by the EFT,SPPB and the IF-VIG.展开更多
Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lowe...Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lower machining efficiency and longer machining time due to its time-varying cutter-workpiece engagement angle and a high percentage of non-cutting tool paths.To address these issues,this paper introduces a parameter-variant trochoidal-like(PVTR)tool path planning method for chatter-free and high-efficiency milling.This method ensures a constant engagement angle for each tool path period by adjusting the trochoidal radius and step.Initially,the nonlinear equation for the PVTR toolpath is established.Then,a segmented recurrence method is proposed to plan tool paths based on the desired engagement angle.The impact of trochoidal tool path parameters on the engagement angle is analyzed and coupled this information with the milling stability model based on spindle speed and engagement angle to determine the desired engagement angle throughout the machining process.Finally,several experimental tests are carried out using the bull-nose end mill to validate the feasibility and effectiveness of the proposed method.展开更多
为探索中美主流媒体在报道“第三届‘一带一路’国际合作高峰论坛”时的评价差异与介入资源分布特征,基于评价理论介入系统框架,运用UAM Corpus Tool语料库工具,就China Daily和CNN网站上所收集整理的新闻报道作介入资源分析,进而得出...为探索中美主流媒体在报道“第三届‘一带一路’国际合作高峰论坛”时的评价差异与介入资源分布特征,基于评价理论介入系统框架,运用UAM Corpus Tool语料库工具,就China Daily和CNN网站上所收集整理的新闻报道作介入资源分析,进而得出中美主流媒体在报道中的关注侧重点、评价差异,以及介入资源的特征。研究结果发现:双方都有大量使用“自言”资源,而在扩展和收缩对话空间上,双方呈现出不同的倾向。同时,CNN和China Daily的报道在“自言”中,所表达的观点截然不同。展开更多
Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medi...Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).展开更多
As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and s...As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and strong adaptability to workpiece shapes.In this study,the effects of jet pressure,nozzle diameter and impinging angle on the distribution of pressure,velocity and wall shear stress in the polishing flow field were systematically analyzed by computational fluid dynamics(CFD)simulation.Based on the Box-Behnken experimental design,a response surface regression model was constructed to investigate the influence mech-anism of process parameters on material removal rate(MRR)and surface roughness(Ra)of fused silica.And experimental results showed that increasing jet pressure and nozzle diameter significantly improved MRR,consistent with shear stress distribution revealed by CFD simulations.However,increasing jet pressure and impinging angle caused higher Ra values,which was unfavorable for surface quality improvement.Genetic algorithm(GA)was used for multi-objective optimization to establish Pareto solutions,achieving concurrent optimization of polishing efficiency and surface quality.A parameter combination of 2 MPa jet pressure,0.3 mm nozzle diameter,and 30°impinging angle achieved MRR of 169.05μm^(3)/s and Ra of 0.50 nm.Exper-imental verification showed prediction errors of 4.4%(MRR)and 3.8%(Ra),confirming the model’s reliabil-ity.This parameter optimization system provides theoretical basis and technical support for ultra-precision polishing of complex curved optical components.展开更多
文摘Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.
文摘According to the structure of the hohl schaft kegel(HSK) tooling system and its working principle, a mechanical model of the HSK tooling system is established. Major factors influencing the stiffness of the system are analyzed and the relationship between the load and the manufacturing quality is obtained. The basic rule of the stiffness variation is presented and the theoretical analysis is in a good agreement with experimental results. The dynamic stiffness must also be considered to evaluate the performance of the tooling system besides the staticstiffness. Finally, the selecting principles of the HSK types are proposed and their optimum operating conditions are established.
文摘Thermal fatigue and high temperature wear are the two principle failure mechanisms for thixoforming dies. Samples of Inconel 617 and Stellite 6 alloys were submitted to thermal cycling under conditions which approximate thixoforming of steels and to sliding wear tests at 750 ℃. The experimental results thus obtained were compared with those of the X32CrMoV33 hot work tool steel. The Inconel 617 and Stellite 6 samples are much more resistant to oxidation and to softening than the hot work tool steel, providing a superior resistance to thermal fatigue cracking. The wear resistance of the Inconel 617 and Stellite 6 alloys at 750 ℃ is also markedly superior. The adhesive oxides growing slowly on Inconel 617 and Stellite 6 alloys sustain the wear action without spalling and are claimed to be responsible for the superior wear resistance of these alloys at 750 ℃.
文摘The present work compares microstructures of hot work steels made by different processes, that is, by sprayforming,by casting, and a commercially supplied H13 steel. Material benefits are recognized by sprayforming hot working tools such as die inserts for hot forging. The sprayformed hot work steels present a fine and homogeneous microstructure,which implies that, at a similar toughness level, the sprayformed steel can be higher alloyed, so that the thermal fatigue and wear resistance at elevated temperatures can be improved. A series of steels with higher vanadium content than commercial hot work steels are developed. There are no segregation and carbide network problems usually encountered in conventional ingot/forging processed high-vanadium steels. Microstructure and hardness of the new sprayformed steels are studied under different heat treatment conditions. It is justified that these sprayformed steels can be directly used for tooling without high temperature hardening. Sprayforming the tool steels onto a precision ceramic mould is demonstrated to extend the technoeconomical benefits, so that a net shape production tool can be rapidly made.Features of the rapid tooling process are also discussed.
基金University of Liège,Walloon Region (First Europe Program Convention n°"NEP" 415824,THIXALU Project and MAGAL Project) and the COST 541 for their financial support
文摘Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<φs<1), which involves the processing of alloys in the semi-solid state.Tooling has to be adapted to this particular process to benefit shear thinning and thixotropic behaviour of such semi-solid material.Tooling parameters, such as the forming speed and tool temperature, have to be accurately controlled because of their influence on thermal exchanges between material flow and tool.These thermal exchanges influence the high-cracking tendency and the rheology of the semi-solid material during forming, which affects parts properties and therefore their quality.Extrusion tests show how thermal exchanges influence quality of thixoforged parts made of 7075 aluminium alloys at high solid fraction by modifying process parameters like forming speed, tool temperature and tool thermal protector.Thus an optimum in terms of thermal exchanges has to be found between surface quality and mechanical properties of the part.A direct application is the evaluation of surface quality of thixoforged thin wall parts made of 7075 aluminium alloy.
文摘X32CrMoV33 hot work tool steel samples coated with AlTiN and AlTiON were submitted to thermal cycling under conditions that approximate thixoforming of steels and to sliding wear tests at 750 ℃,measured to be the cavity surface temperature shortly after the steel slurry is forced into the thixoforming die.AlTiN and AlTiON coatings provide adequate protection against oxidation of the tool steel substrate,but fail to avoid thermal fatigue cracking.This is attributed to the extensive softening of the substrate,the thermal expansion mismatch between the hot work tool steel and the coatings and residual compressive stresses inherited from the deposition process.The impact of AlTiN and AlTiON coatings on the high temperature wear resistance,on the other hand,is favourable.The improved wear resistance is attributed to the stable,protective surface oxide films.
文摘Rapid tooling technique based on the sterelithograph prototype is investigated. The epoxy tooling technological process was elucidated. It is analyzed in detail that the epoxy resin formula is easy to cast, curing process, and release agents. The transitional plaster model is also proposed. The mold to encrust mutual.inductors with epoxy and mold to inject plastic soapboxes was made with the technique The tooling needs very little time and cost, for the process is only to achieve the nice replica of the prototype. It is benefit for the trial and small batch of production.
文摘The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combination is the successful model or patted creating using the RP technology.Significantly reduced lead-time, shortened learns curve, lowered revision changes cost and eliminatedor reduced mold polishing are the consequent results. high quality Electrical Discharge Machining(EDM) electrodes are sometimes difficult to be manufactured rapidly and are very time-consumingby conventional methods, even using Computer Numerical Control (CNC) machines. Abradingprovides a simple way to create etuemely detailed and complex electrode to make molds in toolingmaking industries. Integration with the rapid development of the Rapid Prototyping & Manufacturing(RP&M) technology, the rapid electrode abrading process has been regarded as one of the majorbreakthrough in tooling making technology.
文摘In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.
文摘2024年日本机床展览会(JIMTOF2024)于2024年11月5~10日在东京Tokyo Big Sight举办,展出面积118540平方米。展会以“技术传承提供无限可能(Technologies passed down to the future offer unlimited possibilities)”为主题。
文摘本文采用的着色Petri网(Colored Petri Nets,CPN)是一种基于模型检测法的自动化建模技术,它引入了"颜色集"的概念,以扩展Petri网的表达能力。该技术利用着色Petri网及其配套的建模工具CPN Tools对安全协议进行建模,能够使得模型实现图形化和层次化,其内置的状态空间分析工具及CPN ML语言,能够高效地协助分析人员获取必要数据。本文以经典的密钥交换协议TMN为例,运用CPN方法对其进行形式化分析,成功识别出攻击者可能利用的攻击路径,并验证了协议中存在的安全漏洞。针对这些漏洞,本文提出了一种改进方法,经过验证,证实了该改进方法的有效性。
基金the Rapid Prototyping & Tool-ing Branch of SAPCO Part Supplier of Car Manufacturing Co. of Iran-Khodro and POULADIR Investment Casting Company for supporting this project
文摘A rapid wax injection tool of a gearbox shift fork was designed, simulated, and manufactured using rapid prototyping and rapid tooling technology to save time and cost of producing wax models used for the investment casting process. CAE simulation softwares, in particular, MoldFlow, are used to get wax injection moulding parameters such as filling parameters, temperature profiles, freeze time, speed, and pressure. The results of this research were compared with conventional wax model production methods. The criteria of such comparison were based upon parameters such as time, cost, and other related characteristics, which resulted in saving of 50% in time and 60% in cost. In this research, design, assembly, and wax injection operation of the wax tool took 10 days. Considering the fact that wax melting temperature is as low as 70℃ and injection pressure of 0.5 MPa, the tool suffers no damage due to the thermal and pressure stresses, leading to the mass production of wax models.
文摘Background There is scarce data about comparisons between geriatric assessment tools in patients with aortic stenosis(AS).We aimed to describe the geriatric profile of patients with AS undergoing transcatheter aortic valve implantation(TAVI)and to analyze the ability of different tools for predicting clinical outcomes in this context.Methods This was a single center retrospective registry including patients with AS undergoing TAVI and surviving to hospital discharge.The primary endpoint was all-cause mortality or need for urgent readmission one year after TAVI.Results A total of 377 patients were included(mean age of 80.4 years).Most patients were independent or mildly dependent,with an optimal cognitive status.The proportion of frailty ranged from 17.6%to 49.8%.A total of 20 patients(5.3%)died and 110/377 patients(29.2%)died or were readmitted during follow up.Overall,most components of the geriatric assessment showed an association with clinical outcomes.Disability for instrumental activities showed a significant association with mortality and a strong association with the rate of mortality or readmission.The association between frailty and clinical outcomes was higher for short physical performance battery(SPPB),essential frailty toolset(EFT)and the frailty index based on comprehensive geriatric assessment(IF-VIG)and lower for Fried criteria and FRAIL scale.Conclusions AS patients from this series presented a good physical performance,optimal cognitive status and a reasonably low prevalence of frailty.The best predictive ability was observed for disability for instrumental activities and frailty as measured by the EFT,SPPB and the IF-VIG.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20202 and 52275477).
文摘Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lower machining efficiency and longer machining time due to its time-varying cutter-workpiece engagement angle and a high percentage of non-cutting tool paths.To address these issues,this paper introduces a parameter-variant trochoidal-like(PVTR)tool path planning method for chatter-free and high-efficiency milling.This method ensures a constant engagement angle for each tool path period by adjusting the trochoidal radius and step.Initially,the nonlinear equation for the PVTR toolpath is established.Then,a segmented recurrence method is proposed to plan tool paths based on the desired engagement angle.The impact of trochoidal tool path parameters on the engagement angle is analyzed and coupled this information with the milling stability model based on spindle speed and engagement angle to determine the desired engagement angle throughout the machining process.Finally,several experimental tests are carried out using the bull-nose end mill to validate the feasibility and effectiveness of the proposed method.
文摘为探索中美主流媒体在报道“第三届‘一带一路’国际合作高峰论坛”时的评价差异与介入资源分布特征,基于评价理论介入系统框架,运用UAM Corpus Tool语料库工具,就China Daily和CNN网站上所收集整理的新闻报道作介入资源分析,进而得出中美主流媒体在报道中的关注侧重点、评价差异,以及介入资源的特征。研究结果发现:双方都有大量使用“自言”资源,而在扩展和收缩对话空间上,双方呈现出不同的倾向。同时,CNN和China Daily的报道在“自言”中,所表达的观点截然不同。
基金funded by the National Natural Science Foundation of China(Grant Nos.:82222068,82070423,82270348,and 82173779)the Innovation Team and Talents Cultivation Pro-gram of National Administration of Traditional Chinese Medicine,China(Grant No:ZYYCXTD-D-202206)+1 种基金Fujian Province Science and Technology Project,China(Grant Nos.:2021J01420479,2021J02058,2022J011374,and 2022J02057)Fundamental Research Funds for the Chinese Central Universities,China(Grant No.:20720230070).
文摘Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).
文摘As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and strong adaptability to workpiece shapes.In this study,the effects of jet pressure,nozzle diameter and impinging angle on the distribution of pressure,velocity and wall shear stress in the polishing flow field were systematically analyzed by computational fluid dynamics(CFD)simulation.Based on the Box-Behnken experimental design,a response surface regression model was constructed to investigate the influence mech-anism of process parameters on material removal rate(MRR)and surface roughness(Ra)of fused silica.And experimental results showed that increasing jet pressure and nozzle diameter significantly improved MRR,consistent with shear stress distribution revealed by CFD simulations.However,increasing jet pressure and impinging angle caused higher Ra values,which was unfavorable for surface quality improvement.Genetic algorithm(GA)was used for multi-objective optimization to establish Pareto solutions,achieving concurrent optimization of polishing efficiency and surface quality.A parameter combination of 2 MPa jet pressure,0.3 mm nozzle diameter,and 30°impinging angle achieved MRR of 169.05μm^(3)/s and Ra of 0.50 nm.Exper-imental verification showed prediction errors of 4.4%(MRR)and 3.8%(Ra),confirming the model’s reliabil-ity.This parameter optimization system provides theoretical basis and technical support for ultra-precision polishing of complex curved optical components.