Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We dis...Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.展开更多
Tomographical inversion was performed using the data recorded by 51 seismographys deployed on a profile that followed southern Xizang (Tibet) high-way through a Sino-French Joint seismic experiment. The results indica...Tomographical inversion was performed using the data recorded by 51 seismographys deployed on a profile that followed southern Xizang (Tibet) high-way through a Sino-French Joint seismic experiment. The results indicate that the underthrusting Indian Plate is limited to the south of IndusYarlung Zangbo Suture (IYS) beneath Tethyan Himalaya, extends vertically to 150 km deep with relatively high angle near Gala, and becomes horizontally northward. The seismic velocities beneath Kangmar, Gangdise and Yangbajain-Golug rift in the middle of the lithosphere show low velocity features, which may indicate the existence of high temperature and partial melting. The results from tomography strongly suggest that the continent-continent subduction occurred only beneath Himalaya and was confined to the south of IYS since the collision between India and Eurasia.展开更多
Microcirculation imaging is crucial in understanding the function and health of various tissues and organs.However,conventional imaging methods suffer from fluorescence label dependency,lack of depth resolution,and qu...Microcirculation imaging is crucial in understanding the function and health of various tissues and organs.However,conventional imaging methods suffer from fluorescence label dependency,lack of depth resolution,and quantification inaccuracy.Here,we report a light-sheet dynamic light-scattering imaging(LSHDSI)system to overcome these shortcomings.LSH-DSI utilizes selected plane illumination for an optical sectioning,while a time-frequency analysis method retrieves blood flow velocity estimates from dynamic changes in the detected light intensity.We have performed imaging experiments with zebrafish embryos to obtain angiographs from the trunk and head regions.The results show that LSH-DSI can capture label-free tomographic images of microvasculature and three-dimensional quantitative maps of local blood flow velocities.展开更多
To accurately reconstruct the tomographic gamma scanning(TGS)transmission measurement image,this study optimized the transmission reconstruction equation based on the actual situation of TGS transmission measurement.U...To accurately reconstruct the tomographic gamma scanning(TGS)transmission measurement image,this study optimized the transmission reconstruction equation based on the actual situation of TGS transmission measurement.Using the transmission reconstruction equation and the Monte Carlo program Geant4,an innovative virtual trajectory length model was constructed.This model integrated the solving process for the trajectory length and detection efficiency within the same model.To mitigate the influence of the angular distribution ofγ-rays emitted by the transmitted source at the detector,the transport processes of numerous particles traversing a virtual nuclear waste barrel with a density of zero were simulated.Consequently,a certain amount of information was captured at each step of particle transport.Simultaneously,the model addressed the nonuniform detection efficiency of the detector end face by considering whether the energy deposition of particles in the detector equaled their initial energy.Two models were established to validate the accuracy and reliability of the virtual trajectory length model.Model 1 was a simplified nuclear waste barrel,whereas Model 2 closely resembled the actual structure of a nuclear waste barrel.The results indicated that the proposed virtual trajectory length model significantly enhanced the precision of the trajectory length determination,substantially increasing the quality of the reconstructed images.For example,the reconstructed images of Model 2 using the“point-to-point”and average trajectory models revealed a signalto-noise ratio increase of 375.0%and 112.7%,respectively.Thus,the virtual trajectory length model proposed in this study holds paramount significance for the precise reconstruction of transmission images.Moreover,it can provide support for the accurate detection of radioactive activity in nuclear waste barrels.展开更多
Objective The middle turbinate axilla(MTA)is a crucial anatomical landmark for localizing the lacrimal sac(LS)during endonasal dacryocystorhinostomy(En-DCR).Despite being a standard surgical procedure,En-DCR may lead ...Objective The middle turbinate axilla(MTA)is a crucial anatomical landmark for localizing the lacrimal sac(LS)during endonasal dacryocystorhinostomy(En-DCR).Despite being a standard surgical procedure,En-DCR may lead to severe complications,such as cerebrospinal fluid(CSF)leakage,which is closely associated with anatomical variations between the LS and the anterior skull base(ASB).This study aimed to investigate the anatomical location of the LS relative to the MTA and ASB in Chinese patients with nasolacrimal duct obstruction(NLDO)and analyze the influencing factors.Methods This cross-sectional study enrolled 227 Chinese patients who were diagnosed with NLDO and underwent computed tomographic dacryocystography(CT-DCG).Anatomical distances between LS and MTA,as well as LS and ASB,were measured using CT-DCG images.Results The mean distances from the superior and inferior edges of the LS to the MTA were 9.94±4.70 mm and−0.23±4.15 mm,respectively.Male patients showed significantly more superior–anterior displacement of the LS compared to female patients(P<0.001),while patients with chronic dacryocystitis(CD)had an inferior and posterior LS position relative to those with simple NLDO(P=0.005,P=0.001).The mean distance from the intersection(Point P)of the superior and posterior boundaries of the LS to the ASB(MP)was 18.35±4.48 mm,which was shorter in females and those with frontal sinus aplasia(P=0.001;P<0.001).A subgroup(28/227,12.3%)with a critical anatomical feature was identified,where the distance from Point Q(10 mm posterior to P)to the ASB(NQ distance)was≤10 mm.This subgroup had a higher prevalence of complete supra-MTA LS positioning(71.4%vs.41.2%,P=0.003).Conclusion Preoperative CT-DCG provides essential anatomical insights into the spatial relationship between the LS and MTA in Chinese patients with NLDO.The LS position varies significantly by gender and disease type,with males showing more superior–anterior and CD patients more inferior–posterior positioning relative to the MTA.Special attention should be paid to patients with frontal sinus aplasia or LS entirely above the MTA to minimize the risk of CSF leakage during En-DCR.展开更多
Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomogr...Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.展开更多
Due to the strong penetrability,long-wavelength synthetic aperture radar(SAR)can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media.SAR tomography(TomoSAR)technology can resy...Due to the strong penetrability,long-wavelength synthetic aperture radar(SAR)can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media.SAR tomography(TomoSAR)technology can resynthesize aperture perpendicular to the slant-range direction and then obtain the tomographic profile consisting of power distribution of different heights,providing a powerful technical tool for reconstructing the three-dimensional structure of the penetrable ground objects.As an emerging technology,it is different from the traditional interferometric SAR(InSAR)technology and has advantages in reconstructing the three-dimensional structure of the illuminated media.Over the past two decades,many TomoSAR methods have been proposed to improve the vertical resolution,aiming to distinguish the locations of different scatters in the unit pixel.In order to cope with the forest mission of European Space Agency(ESA)that is designed to provide P-band SAR measurements to determine the amount of biomass and carbon stored in forests,it is necessary to systematically evaluate the performance of forest height and underlying topography inversion using TomoSAR technology.In this paper,we adopt three typical algorithms,namely,Capon,Multiple Signal Classification(MUSIC),and Compressed Sensing(CS),to evaluate the performance in forest height and underlying topography inversion.The P-band airborne full-polarization(FP)SAR data of LopèNational Park in the AfriSAR campaign implemented by ESA in 2016 is adopted to verify the experiment.Furthermore,we explore the effects of different baseline designs and filter methods on the reconstruction of the tomographic profile.The results show that a better tomographic profile can be obtained by using Hamming window filter and Capon algorithm in uniform baseline distribution and a certain number of acquisitions.Compared with LiDAR results,the root-mean-square error(RMSE)of forest height and underlying topography obtained by Capon algorithm is 2.17 m and 1.58 m,which performs the best among the three algorithms.展开更多
BACKGROUND Prostatic artery embolization(PAE)is a promising but also technically demanding interventional radiologic treatment for symptomatic benign prostatic hyperplasia.Many technical challenges in PAE are associat...BACKGROUND Prostatic artery embolization(PAE)is a promising but also technically demanding interventional radiologic treatment for symptomatic benign prostatic hyperplasia.Many technical challenges in PAE are associated with the complex anatomy of prostatic arteries(PAs)and with the systematic attempts to catheterize the PAs of both pelvic sides.Long procedure times and high radiation doses are often the result of these attempts and are considered significant disadvantages of PAE.The authors hypothesized that,in selected patients,these disadvantages could be mitigated by intentionally embolizing PAs of only one pelvic side.AIM To describe the authors’approach for intentionally unilateral PAE(IU-PAE)and its potential benefits.METHODS This was a single-center retrospective study of patients treated with IU-PAE during a period of 2 years.IU-PAE was applied in patients with opacification of more than half of the contralateral prostatic lobe after angiography of the ipsilateral PA(subgroup A),or with markedly asymmetric prostatic enlargement,with the dominant prostatic lobe occupying at least two thirds of the entire gland(subgroup B).All patients treated with IU-PAE also fulfilled at least one of the following criteria:Severe tortuosity or severe atheromatosis of the pelvic arteries,non-visualization,or visualization of a tiny(<1 mm)contralateral PA on preprocedural computed tomographic angiography.Intraprocedural contrast-enhanced ultrasonography(iCEUS)was applied to monitor prostatic infarction.IU-PAE patients were compared to a control group treated with bilateral PAE.RESULTS IU-PAE was performed in a total 13 patients(subgroup A,n=7;subgroup B,n=6).Dose-area product,fluoroscopy time and operation time in the IU-PAE group(9767.8μGy∙m^(2),30.3 minutes,64.0 minutes,respectively)were significantly shorter(45.4%,35.9%,45.8%respectively,P<0.01)compared to the control group.Clinical and imaging outcomes did not differ significantly between the IU-PAE group and the control group.In the 2 clinical failures of IU-PAE(both in subgroup A),the extent of prostatic infarction(demonstrated by iCEUS)was significantly smaller compared to the rest of the IU-PAE group.CONCLUSION In selected patients,IU-PAE is associated with comparable outcomes,but with lower radiation exposure and a shorter procedure compared to bilateral PAE.iCEUS could facilitate patient selection for IU-PAE.展开更多
The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by...The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation.In this study,we drilled number of receiver holes around the source hole,each hole has different depth and each geophone is placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys.We also propose a novel tomographic inversion of the Q factor without the effect of the source signature,and examine its stability and reliability using synthetic data.We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield.The results show that seismic absorption in the nearsurface layer is much greater than that in the subsurface strata.Thus,it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption.In addition,we derive different Q factors from two frequency bands,which can be treated,to some extent,as evidence of a frequency-dependent Q.展开更多
We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate ...We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate system and then the data are transformed from the time-space domain to the time-slowness domain based on tomographic principle, from whichwe can obtain the signals related to the source in the time-slowness domain. Through analyzing the relationship between the signal located at the maximum energy and the source function, we derive the tomographic equations to compute the source function from the signals and to calculate the effective radiated energy based on the source function. Moreover, we fit the real amplitude spectrum of the source function computed from the observed data into the co-2 model based on the least squares principle and determine the zero-frequency level spectrum and the corner frequency, finally, the source rupture radius of the event is calculated and The synthetic and field examples demonstrate that the proposed tomographic inversion methods are reliable and efficient展开更多
This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographi...This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographic velocity inversion. Based on the Bom/Rytov approximation of the frequency-domain wave equation, we derive the traveltime sensitivity kemels of the wave equation on the band-limited wave field and simultaneously obtain the traveltime residuals based on the Rytov approximation. In contrast to single-ray tomography, the modified velocity inversion method improves the inversion stability. Tests of the near- surface velocity model and field data prove that the proposed method has higher accuracy and Computational efficiency than ray theory tomography and full waveform inversion methods.展开更多
Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis co...Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis corrects the rugged surface to a known datum or designed surface velocity model on which to perform migration and update the velocity. We propose a rugged surface tomographic velocity inversion method based on angle-domain common image gathers by which the velocity field can be updated directly from the rugged surface without static correction for pre-stack data and improve inversion precision and efficiency. First, we introduce a method to acquire angle-domain common image gathers (ADCIGs) in rugged surface areas and then perform rugged surface tornographic velocity inversion. Tests with model and field data prove the method to be correct and effective.展开更多
A wavefront sensing and correction correction is proposed that would allow the field of view (FOV) of an adaptive optics spstem to be increased in size by a factor of several tens. This concept is based on the idea of...A wavefront sensing and correction correction is proposed that would allow the field of view (FOV) of an adaptive optics spstem to be increased in size by a factor of several tens. This concept is based on the idea of placing multiple deformable mirrors (DMs) at locations that are conjugate to corresponding. layers of atmospheric turbulence. In order to control properly each DM, a tomographic method for determining the phase distortion contributed by each atmospheric layer has been developed and used in dealing with the circumstance of two layers.展开更多
OBJECTIVE To decrease radiation injury of the esophagus and lungs by utilizing a CT scan in combination with PET tumor imaging in order to minimize the clinical target area of locally advanced non-small cell lung can-...OBJECTIVE To decrease radiation injury of the esophagus and lungs by utilizing a CT scan in combination with PET tumor imaging in order to minimize the clinical target area of locally advanced non-small cell lung can-cer, without preventive radiation on the lymphatic drainage area. METHODS Of 76 patients with locally advanced non-small cell lung cancer (NSCLC), 32 received a PET examination before radiotherapy. Preventive radiation was not conducted in the mediastinum area without lymphatic metastasis, which was confirmed by CT and PET. For the other 44 patients, preventive radiation was performed in the lymphatic drainage area. PET examinations showed that the clinical target volume of the patients was decreased on average to about one third. The radiation therapy for patients of the two groups was the same, i.e. the dose for accelerated fractionated irradiation was 3 Gy/time and 5 time/week. The preventive dose was 42 to 45 Gy/time, 14 to 15 time/week, with 3-week treatment, and the therapeu- tic dose was 60 to 63 Gy/time, 20 to 21 time/week, with a period of 4 to 5 weeks. RESULTS The rate of missed lymph nodes beyond the irradiation field was 6.3% and 4.5% respectively in the group with and without PET exami- nation (P = 0.831). The incidence of acute radioactive esophagitis was 15.6 % and 45.5% in the two groups respectively (P = 0.006). The incidence of acute radiation pneumonia and long-term pulmonary fibrosis in the two groups was 6.3% and 9.1%, and 68.8% and 75.0%, respectively (P = 0.982 and P = 0.547). CONCLUSION The recurrence rate in the lymph nodes beyond the tar-get area was not increased after minimizing the clinical target volume (CTV), whereas radioactive injury to the lungs and esophageal injury was reduced, and especially with a significant decrease in the rate of acute radioactive esophagitis. The method of CT in combination with PET for minimizing the mediastinal CTV is superior to the conventional preventive radiation of the mediastinum.展开更多
For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of micros...For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events.展开更多
Differentiating Crohn's disease(CD) and intestinal tuberculosis(ITB) has remained a dilemma for most of the clinicians in the developing world, which are endemic for ITB, and where the disease burden of inflammato...Differentiating Crohn's disease(CD) and intestinal tuberculosis(ITB) has remained a dilemma for most of the clinicians in the developing world, which are endemic for ITB, and where the disease burden of inflammatory bowel disease is on the rise. Although, there are certain clinical(diarrhea/hematochezia/perianal disease common in CD; fever/night sweats common in ITB), endoscopic(longitudinal/aphthous ulcers common in CD; transverse ulcers/patulous ileocaecal valve common in ITB), histologic(caseating/confluent/large granuloma common in ITB; microgranuloma common in CD), microbiologic(positive stain/culture for acid fast-bacillus in ITB), radiologic(long segment involvement/comb sign/skip lesions common in CD; necrotic lymph node/contiguous ileocaecal involvement common in ITB), and serologic differences between CD and ITB, the only exclusive features are caseation necrosis on biopsy, positive smear for acid-fast bacillus(AFB) and/or AFB culture, and necrotic lymph node on cross-sectional imaging in ITB. However,these exclusive features are limited by poor sensitivity, and this has led to the development of multiple multi-parametric predictive models. These models are also limited by complex formulae, small sample size and lack of validation across other populations. Several new parameters have come up including the latest Bayesian meta-analysis, enumeration of peripheral blood T-regulatory cells, and updated computed tomography based predictive score. However, therapeutic anti-tubercular therapy(ATT) trial, and subsequent clinical and endoscopic response to ATT is still required in a significant proportion of patients to establish the diagnosis. Therapeutic ATT trial is associated with a delay in the diagnosis of CD, and there is a need for better modalities for improved differentiation and reduction in the need for ATT trial.展开更多
Alzheimer’s disease(AD), the most common type of dementia, is becoming a major challenge for global health and social care. However, the current understanding of AD pathogenesis is limited, and no early diagnosis and...Alzheimer’s disease(AD), the most common type of dementia, is becoming a major challenge for global health and social care. However, the current understanding of AD pathogenesis is limited, and no early diagnosis and disease-modifying therapy are currently available. During the past year, significant progress has been made in clinical research on the diagnosis, prevention, and treatment of AD.In this review, we summarize the latest achievements,including diagnostic biomarkers, polygenic hazard score,amyloid and tau PET imaging, clinical trials targeting amyloid-beta(Ab), tau, and neurotransmitters, early intervention, and primary prevention and systemic intervention approaches, and provide novel perspectives for further efforts to understand and cure the disease.展开更多
Twenty years after its introduction, computed tomographic colonography (CTC) has reached its maturity, and it can reasonably be considered the best radiological diagnostic test for imaging colorectal cancer (CRC) and ...Twenty years after its introduction, computed tomographic colonography (CTC) has reached its maturity, and it can reasonably be considered the best radiological diagnostic test for imaging colorectal cancer (CRC) and polyps. This examination technique is less invasive than colonoscopy (CS), easy to perform, and standardized. Reduced bowel preparation and colonic distention using carbon dioxide favor patient compliance. Widespread implementation of a new image reconstruction algorithm has minimized radiation exposure, and the use of dedicated software with enhanced views has enabled easier image interpretation. Integration in the routine workflow of a computer-aided detection algorithm reduces perceptual errors, particularly for small polyps. Consolidated evidence from the literature shows that the diagnostic performances for the detection of CRC and large polyps in symptomatic and asymptomatic individuals are similar to CS and are largely superior to barium enema, the latter of which should be strongly discouraged. Favorable data regarding CTC performance open the possibility for many different indications, some of which are already supported by evidence-based data: incomplete, failed, or unfeasible CS; symptomatic, elderly, and frail patients; and investigation of diverticular disease. Other indications are still being debated and, thus, are recommended only if CS is unfeasible: the use of CTC in CRC screening and in surveillance after surgery for CRC or polypectomy. In order for CTC to be used appropriately, contraindications such as acute abdominal conditions (diverticulitis or the acute phase of inflammatory bowel diseases) and surveillance in patients with a long-standing history of ulcerative colitis or Crohn’s disease and in those with hereditary colonic syndromes should not be overlooked. This will maximize the benefits of the technique and minimize potential sources of frustration or disappointment for both referring clinicians and patients.展开更多
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number ...Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number based on momentum thickness is Reo = 2 460. The in- stantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid, which is flanked on either side by high- speed ones. Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases, and the main vortex characteristic in different wall-normal re- gions can be reflected by comparing the proportion of ejec- tion and its contribution to Reynolds stress with that of sweep event. The pre-multiplied power spectra and two-point cor- relations indicate the presence of large-scale motions in the boundary layer, which are consistent with what have been termed very large scale motions (VLSMs). The three dimen-sional spatial correlations of three components of veloc- ity further indicate that the elongated low-speed and high- speed regions will be accompanied by a counter-rotating roll modes, as the statistical imprint of hairpin packet structures, all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).展开更多
文摘Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.
文摘Tomographical inversion was performed using the data recorded by 51 seismographys deployed on a profile that followed southern Xizang (Tibet) high-way through a Sino-French Joint seismic experiment. The results indicate that the underthrusting Indian Plate is limited to the south of IndusYarlung Zangbo Suture (IYS) beneath Tethyan Himalaya, extends vertically to 150 km deep with relatively high angle near Gala, and becomes horizontally northward. The seismic velocities beneath Kangmar, Gangdise and Yangbajain-Golug rift in the middle of the lithosphere show low velocity features, which may indicate the existence of high temperature and partial melting. The results from tomography strongly suggest that the continent-continent subduction occurred only beneath Himalaya and was confined to the south of IYS since the collision between India and Eurasia.
基金supported by the following funding sources:Ministry of Education-Singapore MOE2019-T2-2-094 Ministry of Education-Singapore Tier I R-397-000-327-114 ScienceTechnology Project of Jiangsu Province(Grant No.BZ2022056)Biomedical and Health Technology Platform,National University of Singapore(Suzhou)Research Institute.
文摘Microcirculation imaging is crucial in understanding the function and health of various tissues and organs.However,conventional imaging methods suffer from fluorescence label dependency,lack of depth resolution,and quantification inaccuracy.Here,we report a light-sheet dynamic light-scattering imaging(LSHDSI)system to overcome these shortcomings.LSH-DSI utilizes selected plane illumination for an optical sectioning,while a time-frequency analysis method retrieves blood flow velocity estimates from dynamic changes in the detected light intensity.We have performed imaging experiments with zebrafish embryos to obtain angiographs from the trunk and head regions.The results show that LSH-DSI can capture label-free tomographic images of microvasculature and three-dimensional quantitative maps of local blood flow velocities.
基金supported by The Youth Science Foundation of Sichuan Province(Nos.2022NSFSC1230,2022NSFSC1231,and 23NSFSC5321)the Science and Technology Innovation Seedling Project of Sichuan Province(No.MZGC20230080)+2 种基金the General project of national Natural Science Foundation of China(No.12075039)the Youth Science Foundation of China(No.12105030)the Key project of the National Natural Science Foundation of China(No.U19A2086)。
文摘To accurately reconstruct the tomographic gamma scanning(TGS)transmission measurement image,this study optimized the transmission reconstruction equation based on the actual situation of TGS transmission measurement.Using the transmission reconstruction equation and the Monte Carlo program Geant4,an innovative virtual trajectory length model was constructed.This model integrated the solving process for the trajectory length and detection efficiency within the same model.To mitigate the influence of the angular distribution ofγ-rays emitted by the transmitted source at the detector,the transport processes of numerous particles traversing a virtual nuclear waste barrel with a density of zero were simulated.Consequently,a certain amount of information was captured at each step of particle transport.Simultaneously,the model addressed the nonuniform detection efficiency of the detector end face by considering whether the energy deposition of particles in the detector equaled their initial energy.Two models were established to validate the accuracy and reliability of the virtual trajectory length model.Model 1 was a simplified nuclear waste barrel,whereas Model 2 closely resembled the actual structure of a nuclear waste barrel.The results indicated that the proposed virtual trajectory length model significantly enhanced the precision of the trajectory length determination,substantially increasing the quality of the reconstructed images.For example,the reconstructed images of Model 2 using the“point-to-point”and average trajectory models revealed a signalto-noise ratio increase of 375.0%and 112.7%,respectively.Thus,the virtual trajectory length model proposed in this study holds paramount significance for the precise reconstruction of transmission images.Moreover,it can provide support for the accurate detection of radioactive activity in nuclear waste barrels.
基金funded by grants from the Natural Science Foundation of Hubei Province(No.2022CFB199)the National Natural Science Foundation of China(No.82271127).
文摘Objective The middle turbinate axilla(MTA)is a crucial anatomical landmark for localizing the lacrimal sac(LS)during endonasal dacryocystorhinostomy(En-DCR).Despite being a standard surgical procedure,En-DCR may lead to severe complications,such as cerebrospinal fluid(CSF)leakage,which is closely associated with anatomical variations between the LS and the anterior skull base(ASB).This study aimed to investigate the anatomical location of the LS relative to the MTA and ASB in Chinese patients with nasolacrimal duct obstruction(NLDO)and analyze the influencing factors.Methods This cross-sectional study enrolled 227 Chinese patients who were diagnosed with NLDO and underwent computed tomographic dacryocystography(CT-DCG).Anatomical distances between LS and MTA,as well as LS and ASB,were measured using CT-DCG images.Results The mean distances from the superior and inferior edges of the LS to the MTA were 9.94±4.70 mm and−0.23±4.15 mm,respectively.Male patients showed significantly more superior–anterior displacement of the LS compared to female patients(P<0.001),while patients with chronic dacryocystitis(CD)had an inferior and posterior LS position relative to those with simple NLDO(P=0.005,P=0.001).The mean distance from the intersection(Point P)of the superior and posterior boundaries of the LS to the ASB(MP)was 18.35±4.48 mm,which was shorter in females and those with frontal sinus aplasia(P=0.001;P<0.001).A subgroup(28/227,12.3%)with a critical anatomical feature was identified,where the distance from Point Q(10 mm posterior to P)to the ASB(NQ distance)was≤10 mm.This subgroup had a higher prevalence of complete supra-MTA LS positioning(71.4%vs.41.2%,P=0.003).Conclusion Preoperative CT-DCG provides essential anatomical insights into the spatial relationship between the LS and MTA in Chinese patients with NLDO.The LS position varies significantly by gender and disease type,with males showing more superior–anterior and CD patients more inferior–posterior positioning relative to the MTA.Special attention should be paid to patients with frontal sinus aplasia or LS entirely above the MTA to minimize the risk of CSF leakage during En-DCR.
基金supported by the National Natural Science Foundation of China(Nos.12232002,12072017,12002199,and 11721202)。
文摘Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.
基金supported by ESA-MOST Dragon Programme 5[grant number 59332].
文摘Due to the strong penetrability,long-wavelength synthetic aperture radar(SAR)can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media.SAR tomography(TomoSAR)technology can resynthesize aperture perpendicular to the slant-range direction and then obtain the tomographic profile consisting of power distribution of different heights,providing a powerful technical tool for reconstructing the three-dimensional structure of the penetrable ground objects.As an emerging technology,it is different from the traditional interferometric SAR(InSAR)technology and has advantages in reconstructing the three-dimensional structure of the illuminated media.Over the past two decades,many TomoSAR methods have been proposed to improve the vertical resolution,aiming to distinguish the locations of different scatters in the unit pixel.In order to cope with the forest mission of European Space Agency(ESA)that is designed to provide P-band SAR measurements to determine the amount of biomass and carbon stored in forests,it is necessary to systematically evaluate the performance of forest height and underlying topography inversion using TomoSAR technology.In this paper,we adopt three typical algorithms,namely,Capon,Multiple Signal Classification(MUSIC),and Compressed Sensing(CS),to evaluate the performance in forest height and underlying topography inversion.The P-band airborne full-polarization(FP)SAR data of LopèNational Park in the AfriSAR campaign implemented by ESA in 2016 is adopted to verify the experiment.Furthermore,we explore the effects of different baseline designs and filter methods on the reconstruction of the tomographic profile.The results show that a better tomographic profile can be obtained by using Hamming window filter and Capon algorithm in uniform baseline distribution and a certain number of acquisitions.Compared with LiDAR results,the root-mean-square error(RMSE)of forest height and underlying topography obtained by Capon algorithm is 2.17 m and 1.58 m,which performs the best among the three algorithms.
基金the General Hospital“Tzanio”Institutional Review Board(Approval No.15/9-3-2024).
文摘BACKGROUND Prostatic artery embolization(PAE)is a promising but also technically demanding interventional radiologic treatment for symptomatic benign prostatic hyperplasia.Many technical challenges in PAE are associated with the complex anatomy of prostatic arteries(PAs)and with the systematic attempts to catheterize the PAs of both pelvic sides.Long procedure times and high radiation doses are often the result of these attempts and are considered significant disadvantages of PAE.The authors hypothesized that,in selected patients,these disadvantages could be mitigated by intentionally embolizing PAs of only one pelvic side.AIM To describe the authors’approach for intentionally unilateral PAE(IU-PAE)and its potential benefits.METHODS This was a single-center retrospective study of patients treated with IU-PAE during a period of 2 years.IU-PAE was applied in patients with opacification of more than half of the contralateral prostatic lobe after angiography of the ipsilateral PA(subgroup A),or with markedly asymmetric prostatic enlargement,with the dominant prostatic lobe occupying at least two thirds of the entire gland(subgroup B).All patients treated with IU-PAE also fulfilled at least one of the following criteria:Severe tortuosity or severe atheromatosis of the pelvic arteries,non-visualization,or visualization of a tiny(<1 mm)contralateral PA on preprocedural computed tomographic angiography.Intraprocedural contrast-enhanced ultrasonography(iCEUS)was applied to monitor prostatic infarction.IU-PAE patients were compared to a control group treated with bilateral PAE.RESULTS IU-PAE was performed in a total 13 patients(subgroup A,n=7;subgroup B,n=6).Dose-area product,fluoroscopy time and operation time in the IU-PAE group(9767.8μGy∙m^(2),30.3 minutes,64.0 minutes,respectively)were significantly shorter(45.4%,35.9%,45.8%respectively,P<0.01)compared to the control group.Clinical and imaging outcomes did not differ significantly between the IU-PAE group and the control group.In the 2 clinical failures of IU-PAE(both in subgroup A),the extent of prostatic infarction(demonstrated by iCEUS)was significantly smaller compared to the rest of the IU-PAE group.CONCLUSION In selected patients,IU-PAE is associated with comparable outcomes,but with lower radiation exposure and a shorter procedure compared to bilateral PAE.iCEUS could facilitate patient selection for IU-PAE.
基金supported by the National Natural Science Foundation of China(Grant No.41174117 and 41474109)the National Key Basic Research Development Program of China(Grant No.2013CB228606)
文摘The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation.In this study,we drilled number of receiver holes around the source hole,each hole has different depth and each geophone is placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys.We also propose a novel tomographic inversion of the Q factor without the effect of the source signature,and examine its stability and reliability using synthetic data.We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield.The results show that seismic absorption in the nearsurface layer is much greater than that in the subsurface strata.Thus,it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption.In addition,we derive different Q factors from two frequency bands,which can be treated,to some extent,as evidence of a frequency-dependent Q.
基金supported jointly by projects of the National Natural Science Fund Project(No.51174016)the National Key Basic Research and Development Plan 973(No.2010CB226803)
文摘We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate system and then the data are transformed from the time-space domain to the time-slowness domain based on tomographic principle, from whichwe can obtain the signals related to the source in the time-slowness domain. Through analyzing the relationship between the signal located at the maximum energy and the source function, we derive the tomographic equations to compute the source function from the signals and to calculate the effective radiated energy based on the source function. Moreover, we fit the real amplitude spectrum of the source function computed from the observed data into the co-2 model based on the least squares principle and determine the zero-frequency level spectrum and the corner frequency, finally, the source rupture radius of the event is calculated and The synthetic and field examples demonstrate that the proposed tomographic inversion methods are reliable and efficient
基金sponsored by the National Natural Science Foundation of China(No.41204086)the Self-governed Innovative Project of China University of Petroleum(No.13CX02041A)+2 种基金the Doctoral Fund of National Ministry of Education(No.20110133120001)the National 863 Project(2011AA060301)the Major National Science and Technology Program(No.2011ZX05006-002)
文摘This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographic velocity inversion. Based on the Bom/Rytov approximation of the frequency-domain wave equation, we derive the traveltime sensitivity kemels of the wave equation on the band-limited wave field and simultaneously obtain the traveltime residuals based on the Rytov approximation. In contrast to single-ray tomography, the modified velocity inversion method improves the inversion stability. Tests of the near- surface velocity model and field data prove that the proposed method has higher accuracy and Computational efficiency than ray theory tomography and full waveform inversion methods.
基金sponsored by the National 863 Project(No.2009AA06Z206)the Self-governed Innovative Project of China University of Petroleum(No.11CX04010A)the Doctoral Fund of National Ministry of Education(No. 20110133120001)
文摘Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis corrects the rugged surface to a known datum or designed surface velocity model on which to perform migration and update the velocity. We propose a rugged surface tomographic velocity inversion method based on angle-domain common image gathers by which the velocity field can be updated directly from the rugged surface without static correction for pre-stack data and improve inversion precision and efficiency. First, we introduce a method to acquire angle-domain common image gathers (ADCIGs) in rugged surface areas and then perform rugged surface tornographic velocity inversion. Tests with model and field data prove the method to be correct and effective.
文摘A wavefront sensing and correction correction is proposed that would allow the field of view (FOV) of an adaptive optics spstem to be increased in size by a factor of several tens. This concept is based on the idea of placing multiple deformable mirrors (DMs) at locations that are conjugate to corresponding. layers of atmospheric turbulence. In order to control properly each DM, a tomographic method for determining the phase distortion contributed by each atmospheric layer has been developed and used in dealing with the circumstance of two layers.
文摘OBJECTIVE To decrease radiation injury of the esophagus and lungs by utilizing a CT scan in combination with PET tumor imaging in order to minimize the clinical target area of locally advanced non-small cell lung can-cer, without preventive radiation on the lymphatic drainage area. METHODS Of 76 patients with locally advanced non-small cell lung cancer (NSCLC), 32 received a PET examination before radiotherapy. Preventive radiation was not conducted in the mediastinum area without lymphatic metastasis, which was confirmed by CT and PET. For the other 44 patients, preventive radiation was performed in the lymphatic drainage area. PET examinations showed that the clinical target volume of the patients was decreased on average to about one third. The radiation therapy for patients of the two groups was the same, i.e. the dose for accelerated fractionated irradiation was 3 Gy/time and 5 time/week. The preventive dose was 42 to 45 Gy/time, 14 to 15 time/week, with 3-week treatment, and the therapeu- tic dose was 60 to 63 Gy/time, 20 to 21 time/week, with a period of 4 to 5 weeks. RESULTS The rate of missed lymph nodes beyond the irradiation field was 6.3% and 4.5% respectively in the group with and without PET exami- nation (P = 0.831). The incidence of acute radioactive esophagitis was 15.6 % and 45.5% in the two groups respectively (P = 0.006). The incidence of acute radiation pneumonia and long-term pulmonary fibrosis in the two groups was 6.3% and 9.1%, and 68.8% and 75.0%, respectively (P = 0.982 and P = 0.547). CONCLUSION The recurrence rate in the lymph nodes beyond the tar-get area was not increased after minimizing the clinical target volume (CTV), whereas radioactive injury to the lungs and esophageal injury was reduced, and especially with a significant decrease in the rate of acute radioactive esophagitis. The method of CT in combination with PET for minimizing the mediastinal CTV is superior to the conventional preventive radiation of the mediastinum.
基金support jointly by projects of the National Natural Science Fund Project (40674017 and 50774012)the National Key Basic Research and Development Plan 973 (2010CB226803)
文摘For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events.
文摘Differentiating Crohn's disease(CD) and intestinal tuberculosis(ITB) has remained a dilemma for most of the clinicians in the developing world, which are endemic for ITB, and where the disease burden of inflammatory bowel disease is on the rise. Although, there are certain clinical(diarrhea/hematochezia/perianal disease common in CD; fever/night sweats common in ITB), endoscopic(longitudinal/aphthous ulcers common in CD; transverse ulcers/patulous ileocaecal valve common in ITB), histologic(caseating/confluent/large granuloma common in ITB; microgranuloma common in CD), microbiologic(positive stain/culture for acid fast-bacillus in ITB), radiologic(long segment involvement/comb sign/skip lesions common in CD; necrotic lymph node/contiguous ileocaecal involvement common in ITB), and serologic differences between CD and ITB, the only exclusive features are caseation necrosis on biopsy, positive smear for acid-fast bacillus(AFB) and/or AFB culture, and necrotic lymph node on cross-sectional imaging in ITB. However,these exclusive features are limited by poor sensitivity, and this has led to the development of multiple multi-parametric predictive models. These models are also limited by complex formulae, small sample size and lack of validation across other populations. Several new parameters have come up including the latest Bayesian meta-analysis, enumeration of peripheral blood T-regulatory cells, and updated computed tomography based predictive score. However, therapeutic anti-tubercular therapy(ATT) trial, and subsequent clinical and endoscopic response to ATT is still required in a significant proportion of patients to establish the diagnosis. Therapeutic ATT trial is associated with a delay in the diagnosis of CD, and there is a need for better modalities for improved differentiation and reduction in the need for ATT trial.
基金supported by the the Chinese Ministry of Science and Technology (2016YFC1306401)
文摘Alzheimer’s disease(AD), the most common type of dementia, is becoming a major challenge for global health and social care. However, the current understanding of AD pathogenesis is limited, and no early diagnosis and disease-modifying therapy are currently available. During the past year, significant progress has been made in clinical research on the diagnosis, prevention, and treatment of AD.In this review, we summarize the latest achievements,including diagnostic biomarkers, polygenic hazard score,amyloid and tau PET imaging, clinical trials targeting amyloid-beta(Ab), tau, and neurotransmitters, early intervention, and primary prevention and systemic intervention approaches, and provide novel perspectives for further efforts to understand and cure the disease.
文摘Twenty years after its introduction, computed tomographic colonography (CTC) has reached its maturity, and it can reasonably be considered the best radiological diagnostic test for imaging colorectal cancer (CRC) and polyps. This examination technique is less invasive than colonoscopy (CS), easy to perform, and standardized. Reduced bowel preparation and colonic distention using carbon dioxide favor patient compliance. Widespread implementation of a new image reconstruction algorithm has minimized radiation exposure, and the use of dedicated software with enhanced views has enabled easier image interpretation. Integration in the routine workflow of a computer-aided detection algorithm reduces perceptual errors, particularly for small polyps. Consolidated evidence from the literature shows that the diagnostic performances for the detection of CRC and large polyps in symptomatic and asymptomatic individuals are similar to CS and are largely superior to barium enema, the latter of which should be strongly discouraged. Favorable data regarding CTC performance open the possibility for many different indications, some of which are already supported by evidence-based data: incomplete, failed, or unfeasible CS; symptomatic, elderly, and frail patients; and investigation of diverticular disease. Other indications are still being debated and, thus, are recommended only if CS is unfeasible: the use of CTC in CRC screening and in surveillance after surgery for CRC or polypectomy. In order for CTC to be used appropriately, contraindications such as acute abdominal conditions (diverticulitis or the acute phase of inflammatory bowel diseases) and surveillance in patients with a long-standing history of ulcerative colitis or Crohn’s disease and in those with hereditary colonic syndromes should not be overlooked. This will maximize the benefits of the technique and minimize potential sources of frustration or disappointment for both referring clinicians and patients.
基金supported by the National Natural Science Foundation of China (10832001 and 10872145)the State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences
文摘Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number based on momentum thickness is Reo = 2 460. The in- stantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid, which is flanked on either side by high- speed ones. Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases, and the main vortex characteristic in different wall-normal re- gions can be reflected by comparing the proportion of ejec- tion and its contribution to Reynolds stress with that of sweep event. The pre-multiplied power spectra and two-point cor- relations indicate the presence of large-scale motions in the boundary layer, which are consistent with what have been termed very large scale motions (VLSMs). The three dimen-sional spatial correlations of three components of veloc- ity further indicate that the elongated low-speed and high- speed regions will be accompanied by a counter-rotating roll modes, as the statistical imprint of hairpin packet structures, all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).