This paper investigates the tolerable sample size needed for Ordinary Least Square (OLS) Estimator to be used when there is presence of Multicollinearity among the exogenous variables of a linear regression model. A r...This paper investigates the tolerable sample size needed for Ordinary Least Square (OLS) Estimator to be used when there is presence of Multicollinearity among the exogenous variables of a linear regression model. A regression model with constant term (β0) and two independent variables (with β1 and β2 as their respective regression coefficients) that exhibit multicollinearity was considered. A Monte Carlo study of 1000 trials was conducted at eight levels of multicollinearity (0, 0.25, 0.5, 0.7, 0.75, 0.8, 0.9 and 0.99) and sample sizes (10, 20, 40, 80, 100, 150, 250 and 500). At each specification, the true regression coefficients were set at unity while 1.5, 2.0 and 2.5 were taken as the hypothesized value. The power value rate was obtained at every multicollinearity level for the aforementioned sample sizes. Therefore, whether the hypothesized values highly depart from the true values or not once the multicollinearity level is very high (i.e. 0.99), the sample size needed to work with in order to have an error free estimation or the inference result must be greater than five hundred.展开更多
The primary goal of a phase I clinical trial is to find the maximum tolerable dose of a treatment. In this paper, we propose a new stepwise method based on confidence bound and information incorporation to determine t...The primary goal of a phase I clinical trial is to find the maximum tolerable dose of a treatment. In this paper, we propose a new stepwise method based on confidence bound and information incorporation to determine the maximum tolerable dose among given dose levels. On the one hand, in order to avoid severe even fatal toxicity to occur and reduce the experimental subjects, the new method is executed from the lowest dose level, and then goes on in a stepwise fashion. On the other hand, in order to improve the accuracy of the recommendation, the final recommendation of the maximum tolerable dose is accomplished through the information incorporation of an additional experimental cohort at the same dose level. Furthermore, empirical simulation results show that the new method has some real advantages in comparison with the modified continual reassessment method.展开更多
There is compelling evidence to support the quality,cost effectiveness and safety profile of non-anesthesiologist-administered propofol for endoscopic ultrasound (EUS). However in the United Kingdom, it is recommended...There is compelling evidence to support the quality,cost effectiveness and safety profile of non-anesthesiologist-administered propofol for endoscopic ultrasound (EUS). However in the United Kingdom, it is recommended that the administration and monitoring of propofol sedation for endoscopic procedures should be the responsibility of a dedicated and appropriately trained anaesthetist only. The majority of United Kingdom EUS procedures are performed with opiate and benzodiazepine sedation rather than anaesthetist led propofol lists due to anaesthetist resource availability. We sought to prospectively determine the tolerability and safety of EUS with benzodiazepine and opiate sedation in single United Kingdom centre. Two hundred consecutive patients undergoing either EUS or oesophago-gastroduodenoscopy (OGD) with conscious sedation were prospectively recruited with a 1:1 enrolment ratio. Patients completed questionnaires pre and post procedure detailing anticipated and actual pain experienced on a 1-10 visual analogue scale. Demographics, procedure duration, sedation doses and willingness to repeat the procedure were also recorded. EUS procedures lasted significantly longer than OGDs(15 min vs 6 min, P < 0.0001), however, there was no difference in anticipated pain scores between the groups(EUS 3.37/10 vs OGD 3.47/10, P = 0.46). Pain scores indicated EUS was better tolerated than OGD(1.16/10 vs 1.88/10, P = 0.03) although higher doses of sedation were used for EUS procedures. There were no complications identified in either group. We feel our study demonstrates that the tolerability of EUS with opiate and benzodiazepine sedation is acceptable.展开更多
To evaluate the effectiveness and tolerability of a split-dose 2 L polyethylene glycol (PEG)/ascorbic acid (AA) regimen for healthy examinees who visited for comprehensive medical check-up in the early morning.METHODS...To evaluate the effectiveness and tolerability of a split-dose 2 L polyethylene glycol (PEG)/ascorbic acid (AA) regimen for healthy examinees who visited for comprehensive medical check-up in the early morning.METHODSFrom February 2015 to March 2015, examinees of average risk who were scheduled for a colonoscopy in the morning were retrospectively enrolled.RESULTSThe 189 examinees were divided into split-dose and non-split-dose groups. The adequacy of bowel preparation for the split-dose group vs the non-split-dose group was 96.8% vs 85.2%, respectively, P < 0.001, and the compliance of the last meal restriction was 74.6% vs 58.2%, respectively, P < 0.001. The sleep disturbance (P < 0.001) was more prevalent in the split-dose group, however the willingness to repeat the same preparation method (P = 0.243) was not different in both groups. The split-dose regimen was the most important factor influencing adequate bowel preparation in multivariate analysis (HR = 10.89, 95%CI: 6.53-18.17, P < 0.001).CONCLUSIONA split-dose regimen of 2 L PEG/AA for an early morning colonoscopy was more effective and showed better compliance for diet restriction without any difference in satisfaction and discomfort. Introducing a split-dose regimen of 2 L PEG/AA to morning colonoscopy examinees is effective and tolerable in a comprehensive medical check-up setting.展开更多
This paper proposed a bi-criteria weighting approach for fault tolerant control(FTC)of SY-II remote operated vehicle(ROV).This approach integrates the minimum kinetic energy(2-norm optimal)approach with the infinity-n...This paper proposed a bi-criteria weighting approach for fault tolerant control(FTC)of SY-II remote operated vehicle(ROV).This approach integrates the minimum kinetic energy(2-norm optimal)approach with the infinity-norm approach through a weighting coefcient,on the basis of SY-II ROV force allocation model.For the realization of fault tolerable control,this approach converts a quadratic programming problem into primaldual neural network.From the motion control simulations and experiments,bi-criteria optimization approach outperforms minimum kinetic energy optimization in FTC,SY-II ROV can realize 2-degree of freedom(DOF)horizontal fault tolerant control with one main thruster and any of horizontal ones.Therefore,this scheme is proved to be of superiority and computational efciency,both the reliability and safety for ROV have been improved.展开更多
Characterization of a mobile radio channel plays an important role in designing a reliable wireless communication system. Such channels are analyzed by two state model, namely satisfactory and outage state. This paper...Characterization of a mobile radio channel plays an important role in designing a reliable wireless communication system. Such channels are analyzed by two state model, namely satisfactory and outage state. This paper presents the analysis to estimate fading parameters of wireless channel with omission of certain outage durations which are considered as “Tolerance time”. Minimum outage duration which can be tolerated by a wireless fading channel to achieve desired packet error rate is defined as tolerance time. Normally a system with tolerable minimum outage time is analyzed based on Fade Duration Distribution (FDD) function over Rayleigh channel. In this paper Weibull function is used as FDD for varying tolerance time. The approach is simple and in general applicable from Rayleigh to Nakagami channels. The analysis is extended to study the effect of Tolerance time on channel fading statistics such as Average Fade Duration (AFD) and frequency of outage. Further the effects of various fade margin and Doppler spread on fading parameters are also investigated. The analysis can also be used in case of timeout expiration, connection resetting and congestion window control.展开更多
Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immun...Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.展开更多
BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and of...BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and often the condition is prolonged,and the patients are prone to anxiety and uneasiness,which may be related to the harshness of the plateau environment,somatic discomfort due to the lack of oxygen,anxiety about the disease,and other factors.AIM To investigate the effects of cognitive behavioral therapy(CBT)on anxiety,sleep disorders,and hypoxia tolerance in patients with high-altitude respiratory diseases.METHODS A total of 2337 patients with high-altitude-related respiratory diseases treated at our hospital between November 2023 and January 2024 were selected as the study subjects.The subjects’pre-high-altitude residential altitude was approximately 1700 meters.They were divided into two groups.Both groups were given symptomatic treatment,and the control group implemented conventional nursing intervention,while the research group simultaneously conducted CBT intervention;assessed the degree of health knowledge of the two groups,and applied the Hamilton Anxiety Scale and the Pittsburgh Sleep Quality Index to assess the anxiety and sleep quality of the patients before and after the intervention,respectively.It also observed the length and efficiency of sleep,and detected the level of serum hypoxia inducible factor-1α,erythropoietin(EPO)and clinical intervention before and after intervention.EPO levels,and investigated satisfaction with the clinical intervention.RESULTS The rate of excellent health knowledge in the intervention group was 93.64%,which was higher than that in the control group(74.23%;P<0.05).Before the intervention,there was no significant difference in Hamilton Anxiety Scale and Pittsburgh Sleep Quality Index scores between the two groups(P>0.05),and after the intervention,the scores of the study group were significantly lower than those of the control group(P<0.05).There was no significant difference in sleep duration and sleep efficiency between the groups before the intervention(P>0.05),and after the intervention,the scores of the study group were significantly larger than those of the control group(P<0.05).There was no significant difference in serum hypoxia inducible factor-1αand EPO between the two groups before intervention(P>0.05),and both research groups were significantly lower than the control group after intervention(P<0.05).According to the questionnaire survey,the intervention satisfaction of the study group was 95.53%,which was higher than that of the control group(80.14%;P<0.05).CONCLUSION The CBT intervention in the treatment of patients with high-altitude-related respiratory diseases helps improve patients'health knowledge,relieve anxiety,improve sleep quality and hypoxia tolerance,and improve nursing satisfaction.展开更多
Regulatory T cells,a subset of CD4^(+)T cells,play a critical role in maintaining immune tolerance and tissue homeostasis due to their potent immunosuppressive properties.Recent advances in research have highlighted t...Regulatory T cells,a subset of CD4^(+)T cells,play a critical role in maintaining immune tolerance and tissue homeostasis due to their potent immunosuppressive properties.Recent advances in research have highlighted the important therapeutic potential of Tregs in neurological diseases and tissue repair,emphasizing their multifaceted roles in immune regulation.This review aims to summarize and analyze the mechanisms of action and therapeutic potential of Tregs in relation to neurological diseases and neural regeneration.Beyond their classical immune-regulatory functions,emerging evidence points to non-immune mechanisms of regulatory T cells,particularly their interactions with stem cells and other non-immune cells.These interactions contribute to optimizing the repair microenvironment and promoting tissue repair and nerve regeneration,positioning non-immune pathways as a promising direction for future research.By modulating immune and non-immune cells,including neurons and glia within neural tissues,Tregs have demonstrated remarkable efficacy in enhancing regeneration in the central and peripheral nervous systems.Preclinical studies have revealed that Treg cells interact with neurons,glial cells,and other neural components to mitigate inflammatory damage and support functional recovery.Current mechanistic studies show that Tregs can significantly promote neural repair and functional recovery by regulating inflammatory responses and the local immune microenvironment.However,research on the mechanistic roles of regulatory T cells in other diseases remains limited,highlighting substantial gaps and opportunities for exploration in this field.Laboratory and clinical studies have further advanced the application of regulatory T cells.Technical advances have enabled efficient isolation,ex vivo expansion and functionalization,and adoptive transfer of regulatory T cells,with efficacy validated in animal models.Innovative strategies,including gene editing,cell-free technologies,biomaterial-based recruitment,and in situ delivery have expanded the therapeutic potential of regulatory T cells.Gene editing enables precise functional optimization,while biomaterial and in situ delivery technologies enhance their accumulation and efficacy at target sites.These advancements not only improve the immune-regulatory capacity of regulatory T cells but also significantly enhance their role in tissue repair.By leveraging the pivotal and diverse functions of Tregs in immune modulation and tissue repair,regulatory T cells–based therapies may lead to transformative breakthroughs in the treatment of neurological diseases.展开更多
Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular le...Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular level,many small molecules play crucial roles in balancing growth and defense,and stable high yields can be achieved by fine-tuning the responses to external stimuli.Therefore,it is essential to understand the molecular mechanisms underlying plant growth in response to heat stress and how plants can adjust their biological processes to survive heat stress conditions.In this review,we summarize the heat-responsive genetic networks in plants and crop plants based on recent studies.We focus on how plants sense the elevated temperatures and initiate the cellular and metabolic responses that allow them to adapt to the adverse growing conditions.We also describe the trade-off between plant growth and responses to heat stress.Specifically,we address the regulatory network of plant responses to heat stress,which will facilitate the discovery of novel thermotolerance genes and provide new opportunities for agricultural applications.展开更多
The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase ge...The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase gene family member OsCHI3 participates in rice responses to drought stress through the regulation of flavonoid biosynthesis.Overexpression of OsCHI3 increased the tolerance of rice to drought stress.In contrast,CRISPR/Cas9-mediated deletion of OsCHI3 reduced the drought tolerance of rice,an effect that is reversed by exogenous ABA treatment.Transcriptomic and physiological biochemical analyses indicated that flavonoids regulated by OsCHI3 not only scavenge reactive oxygen species(ROS)but also increase drought tolerance in rice by stimulating ABA biosynthesis through the regulation of OsNCED1 and OsABA8ox3 expression.These findings demonstrate that OsCHI3 increases drought stress tolerance in rice by activating the antioxidant defense system and the ABA metabolic pathway,providing new clues for drought-resistant rice breeding research.展开更多
Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in s...Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.展开更多
The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:tho...The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.展开更多
Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing p...Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing plants to resist recurrent severe drought stress.However,the underlying mechanisms remain unclear.Here,we subjected wheat plants to drought priming during the vegetative growth stage and to severe drought stress at 10 days after anthesis.We then collected leaf samples at the ends of the drought priming and recovery periods,and at the end of drought stress for transcriptome sequencing in combination with phenotypic and physiological analyses.The drought-primed wheat plants maintained a lower plant temperature,with higher stomatal openness and photosynthesis,thereby resulting in much lower 1,000-grain weight and grain yield losses under the later drought stress than the non-primed plants.Interestingly,416 genes,including 27 transcription factors(e.g.,MYB,NAC,HSF),seemed to be closely related to the improved drought tolerance as indicated by the dynamic transcriptome analysis.Moreover,the candidate genes showed six temporal expression patterns and were significantly enriched in several stress response related pathways,such as plant hormone signal transduction,starch and sucrose metabolism,arginine and proline metabolism,inositol phosphate metabolism,and wax synthesis.These findings provide new insights into the physiological and molecular mechanisms of the long-term effects of early drought priming that can effectively improve drought tolerance in wheat,and may provide potential approaches for addressing the challenges of increasing abiotic stresses and securing food safety under global warming scenarios.展开更多
FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especi...FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especially the molecular mechanism through which FLZs function,are not well understood.In this study,we characterized 120FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase(SOD)and peroxidase(POD)activities and soluble sugar content,but a lower Na^(+)/K^(+)ratio and malondialdehyde(MDA)content than the wild type(WT)plants.Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between Ta FLZ54D transgenic wheat and the WT.Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.In summary,TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na^(+)absorption and mitigate oxidative stress.The interaction between TaFLZ54D and TaSGT1,as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins.展开更多
Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in...Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.展开更多
Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interan...Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.展开更多
To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military ...To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.展开更多
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
In this editorial,we comment on the article by Mu et al,published in the recent issue of the World Journal of Gastrointestinal Oncology.We pay special attention to the immune tolerance mechanism caused by hepatitis B ...In this editorial,we comment on the article by Mu et al,published in the recent issue of the World Journal of Gastrointestinal Oncology.We pay special attention to the immune tolerance mechanism caused by hepatitis B virus(HBV)infection,the pathogenesis of hepatocellular carcinoma(HCC),and the role of antiviral therapy in treating HCC related to HBV infection.HBV infection leads to systemic innate immune tolerance by directly inhibiting pattern recognition receptor recognition and antiviral signaling pathways,as well as by inhibiting the immune functions of macrophages,natural killer cells and dendritic cells.In addition,HBV leads to an immunosuppressive cascade by expressing inhibitory molecules to induce exhaustion of HBV-specific cluster of differentiation 8+T cells,ultimately leading to long-term viral infection.The loss of immune cell function caused by HBV infection ultimately leads to HCC.Long-term antiviral therapy can improve the prognosis of patients with HCC and prevent tumor recurrence and metastasis.展开更多
文摘This paper investigates the tolerable sample size needed for Ordinary Least Square (OLS) Estimator to be used when there is presence of Multicollinearity among the exogenous variables of a linear regression model. A regression model with constant term (β0) and two independent variables (with β1 and β2 as their respective regression coefficients) that exhibit multicollinearity was considered. A Monte Carlo study of 1000 trials was conducted at eight levels of multicollinearity (0, 0.25, 0.5, 0.7, 0.75, 0.8, 0.9 and 0.99) and sample sizes (10, 20, 40, 80, 100, 150, 250 and 500). At each specification, the true regression coefficients were set at unity while 1.5, 2.0 and 2.5 were taken as the hypothesized value. The power value rate was obtained at every multicollinearity level for the aforementioned sample sizes. Therefore, whether the hypothesized values highly depart from the true values or not once the multicollinearity level is very high (i.e. 0.99), the sample size needed to work with in order to have an error free estimation or the inference result must be greater than five hundred.
文摘The primary goal of a phase I clinical trial is to find the maximum tolerable dose of a treatment. In this paper, we propose a new stepwise method based on confidence bound and information incorporation to determine the maximum tolerable dose among given dose levels. On the one hand, in order to avoid severe even fatal toxicity to occur and reduce the experimental subjects, the new method is executed from the lowest dose level, and then goes on in a stepwise fashion. On the other hand, in order to improve the accuracy of the recommendation, the final recommendation of the maximum tolerable dose is accomplished through the information incorporation of an additional experimental cohort at the same dose level. Furthermore, empirical simulation results show that the new method has some real advantages in comparison with the modified continual reassessment method.
文摘There is compelling evidence to support the quality,cost effectiveness and safety profile of non-anesthesiologist-administered propofol for endoscopic ultrasound (EUS). However in the United Kingdom, it is recommended that the administration and monitoring of propofol sedation for endoscopic procedures should be the responsibility of a dedicated and appropriately trained anaesthetist only. The majority of United Kingdom EUS procedures are performed with opiate and benzodiazepine sedation rather than anaesthetist led propofol lists due to anaesthetist resource availability. We sought to prospectively determine the tolerability and safety of EUS with benzodiazepine and opiate sedation in single United Kingdom centre. Two hundred consecutive patients undergoing either EUS or oesophago-gastroduodenoscopy (OGD) with conscious sedation were prospectively recruited with a 1:1 enrolment ratio. Patients completed questionnaires pre and post procedure detailing anticipated and actual pain experienced on a 1-10 visual analogue scale. Demographics, procedure duration, sedation doses and willingness to repeat the procedure were also recorded. EUS procedures lasted significantly longer than OGDs(15 min vs 6 min, P < 0.0001), however, there was no difference in anticipated pain scores between the groups(EUS 3.37/10 vs OGD 3.47/10, P = 0.46). Pain scores indicated EUS was better tolerated than OGD(1.16/10 vs 1.88/10, P = 0.03) although higher doses of sedation were used for EUS procedures. There were no complications identified in either group. We feel our study demonstrates that the tolerability of EUS with opiate and benzodiazepine sedation is acceptable.
文摘To evaluate the effectiveness and tolerability of a split-dose 2 L polyethylene glycol (PEG)/ascorbic acid (AA) regimen for healthy examinees who visited for comprehensive medical check-up in the early morning.METHODSFrom February 2015 to March 2015, examinees of average risk who were scheduled for a colonoscopy in the morning were retrospectively enrolled.RESULTSThe 189 examinees were divided into split-dose and non-split-dose groups. The adequacy of bowel preparation for the split-dose group vs the non-split-dose group was 96.8% vs 85.2%, respectively, P < 0.001, and the compliance of the last meal restriction was 74.6% vs 58.2%, respectively, P < 0.001. The sleep disturbance (P < 0.001) was more prevalent in the split-dose group, however the willingness to repeat the same preparation method (P = 0.243) was not different in both groups. The split-dose regimen was the most important factor influencing adequate bowel preparation in multivariate analysis (HR = 10.89, 95%CI: 6.53-18.17, P < 0.001).CONCLUSIONA split-dose regimen of 2 L PEG/AA for an early morning colonoscopy was more effective and showed better compliance for diet restriction without any difference in satisfaction and discomfort. Introducing a split-dose regimen of 2 L PEG/AA to morning colonoscopy examinees is effective and tolerable in a comprehensive medical check-up setting.
基金the National Natural Science Foundation of China(Nos.51279039 and 1209050)the Harbin Special Funds for Technological Innovation Research(No.2013RFQXJ117)the Technology Programof Educational Department of Heilongjiang Province(No.11553065)
文摘This paper proposed a bi-criteria weighting approach for fault tolerant control(FTC)of SY-II remote operated vehicle(ROV).This approach integrates the minimum kinetic energy(2-norm optimal)approach with the infinity-norm approach through a weighting coefcient,on the basis of SY-II ROV force allocation model.For the realization of fault tolerable control,this approach converts a quadratic programming problem into primaldual neural network.From the motion control simulations and experiments,bi-criteria optimization approach outperforms minimum kinetic energy optimization in FTC,SY-II ROV can realize 2-degree of freedom(DOF)horizontal fault tolerant control with one main thruster and any of horizontal ones.Therefore,this scheme is proved to be of superiority and computational efciency,both the reliability and safety for ROV have been improved.
文摘Characterization of a mobile radio channel plays an important role in designing a reliable wireless communication system. Such channels are analyzed by two state model, namely satisfactory and outage state. This paper presents the analysis to estimate fading parameters of wireless channel with omission of certain outage durations which are considered as “Tolerance time”. Minimum outage duration which can be tolerated by a wireless fading channel to achieve desired packet error rate is defined as tolerance time. Normally a system with tolerable minimum outage time is analyzed based on Fade Duration Distribution (FDD) function over Rayleigh channel. In this paper Weibull function is used as FDD for varying tolerance time. The approach is simple and in general applicable from Rayleigh to Nakagami channels. The analysis is extended to study the effect of Tolerance time on channel fading statistics such as Average Fade Duration (AFD) and frequency of outage. Further the effects of various fade margin and Doppler spread on fading parameters are also investigated. The analysis can also be used in case of timeout expiration, connection resetting and congestion window control.
基金supported by the National Natural Science Foundation of China(Nos.82573045,82460602,82560459)the Hainan Provincial Graduate Student Innovative Research Project(No.Qhys2024-440).
文摘Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.
基金Supported by Army Logistics Department Health Bureau Project,No.QJGYXYJZX-012.
文摘BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and often the condition is prolonged,and the patients are prone to anxiety and uneasiness,which may be related to the harshness of the plateau environment,somatic discomfort due to the lack of oxygen,anxiety about the disease,and other factors.AIM To investigate the effects of cognitive behavioral therapy(CBT)on anxiety,sleep disorders,and hypoxia tolerance in patients with high-altitude respiratory diseases.METHODS A total of 2337 patients with high-altitude-related respiratory diseases treated at our hospital between November 2023 and January 2024 were selected as the study subjects.The subjects’pre-high-altitude residential altitude was approximately 1700 meters.They were divided into two groups.Both groups were given symptomatic treatment,and the control group implemented conventional nursing intervention,while the research group simultaneously conducted CBT intervention;assessed the degree of health knowledge of the two groups,and applied the Hamilton Anxiety Scale and the Pittsburgh Sleep Quality Index to assess the anxiety and sleep quality of the patients before and after the intervention,respectively.It also observed the length and efficiency of sleep,and detected the level of serum hypoxia inducible factor-1α,erythropoietin(EPO)and clinical intervention before and after intervention.EPO levels,and investigated satisfaction with the clinical intervention.RESULTS The rate of excellent health knowledge in the intervention group was 93.64%,which was higher than that in the control group(74.23%;P<0.05).Before the intervention,there was no significant difference in Hamilton Anxiety Scale and Pittsburgh Sleep Quality Index scores between the two groups(P>0.05),and after the intervention,the scores of the study group were significantly lower than those of the control group(P<0.05).There was no significant difference in sleep duration and sleep efficiency between the groups before the intervention(P>0.05),and after the intervention,the scores of the study group were significantly larger than those of the control group(P<0.05).There was no significant difference in serum hypoxia inducible factor-1αand EPO between the two groups before intervention(P>0.05),and both research groups were significantly lower than the control group after intervention(P<0.05).According to the questionnaire survey,the intervention satisfaction of the study group was 95.53%,which was higher than that of the control group(80.14%;P<0.05).CONCLUSION The CBT intervention in the treatment of patients with high-altitude-related respiratory diseases helps improve patients'health knowledge,relieve anxiety,improve sleep quality and hypoxia tolerance,and improve nursing satisfaction.
基金supported by the National Natural Science Foundation of China,Nos.32271389,31900987(both to PY)the Natural Science Foundation of Jiangsu Province,No.BK20230608(to JJ)。
文摘Regulatory T cells,a subset of CD4^(+)T cells,play a critical role in maintaining immune tolerance and tissue homeostasis due to their potent immunosuppressive properties.Recent advances in research have highlighted the important therapeutic potential of Tregs in neurological diseases and tissue repair,emphasizing their multifaceted roles in immune regulation.This review aims to summarize and analyze the mechanisms of action and therapeutic potential of Tregs in relation to neurological diseases and neural regeneration.Beyond their classical immune-regulatory functions,emerging evidence points to non-immune mechanisms of regulatory T cells,particularly their interactions with stem cells and other non-immune cells.These interactions contribute to optimizing the repair microenvironment and promoting tissue repair and nerve regeneration,positioning non-immune pathways as a promising direction for future research.By modulating immune and non-immune cells,including neurons and glia within neural tissues,Tregs have demonstrated remarkable efficacy in enhancing regeneration in the central and peripheral nervous systems.Preclinical studies have revealed that Treg cells interact with neurons,glial cells,and other neural components to mitigate inflammatory damage and support functional recovery.Current mechanistic studies show that Tregs can significantly promote neural repair and functional recovery by regulating inflammatory responses and the local immune microenvironment.However,research on the mechanistic roles of regulatory T cells in other diseases remains limited,highlighting substantial gaps and opportunities for exploration in this field.Laboratory and clinical studies have further advanced the application of regulatory T cells.Technical advances have enabled efficient isolation,ex vivo expansion and functionalization,and adoptive transfer of regulatory T cells,with efficacy validated in animal models.Innovative strategies,including gene editing,cell-free technologies,biomaterial-based recruitment,and in situ delivery have expanded the therapeutic potential of regulatory T cells.Gene editing enables precise functional optimization,while biomaterial and in situ delivery technologies enhance their accumulation and efficacy at target sites.These advancements not only improve the immune-regulatory capacity of regulatory T cells but also significantly enhance their role in tissue repair.By leveraging the pivotal and diverse functions of Tregs in immune modulation and tissue repair,regulatory T cells–based therapies may lead to transformative breakthroughs in the treatment of neurological diseases.
基金supported by the National Natural Science Foundation of China(32171945,32301760)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province,China(22IRTSTHN023)+2 种基金the Scientific and Technological Research Project of Henan Province,China(242102111116)the National Science Foundation for Postdoctoral Scientists of China(2023M731003)the Postdoctoral Research Subsidize Fund of Henan Province,China(HN2022139)。
文摘Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular level,many small molecules play crucial roles in balancing growth and defense,and stable high yields can be achieved by fine-tuning the responses to external stimuli.Therefore,it is essential to understand the molecular mechanisms underlying plant growth in response to heat stress and how plants can adjust their biological processes to survive heat stress conditions.In this review,we summarize the heat-responsive genetic networks in plants and crop plants based on recent studies.We focus on how plants sense the elevated temperatures and initiate the cellular and metabolic responses that allow them to adapt to the adverse growing conditions.We also describe the trade-off between plant growth and responses to heat stress.Specifically,we address the regulatory network of plant responses to heat stress,which will facilitate the discovery of novel thermotolerance genes and provide new opportunities for agricultural applications.
基金supported by Science and Technology Innovation Program of Hunan province(2024NK1010,2023NK1010,2023ZJ1080)the National Natural Science Foundation of China(U21A20208).
文摘The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase gene family member OsCHI3 participates in rice responses to drought stress through the regulation of flavonoid biosynthesis.Overexpression of OsCHI3 increased the tolerance of rice to drought stress.In contrast,CRISPR/Cas9-mediated deletion of OsCHI3 reduced the drought tolerance of rice,an effect that is reversed by exogenous ABA treatment.Transcriptomic and physiological biochemical analyses indicated that flavonoids regulated by OsCHI3 not only scavenge reactive oxygen species(ROS)but also increase drought tolerance in rice by stimulating ABA biosynthesis through the regulation of OsNCED1 and OsABA8ox3 expression.These findings demonstrate that OsCHI3 increases drought stress tolerance in rice by activating the antioxidant defense system and the ABA metabolic pathway,providing new clues for drought-resistant rice breeding research.
基金supported by a research grant from the National University of Singapore to WQS(RP-3960366)a collaborative research grant from Sichuan Zhongke Organ Co.Ltd(Chengdu,China).
文摘Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.
基金supported by the National Natural Science Foundation of China(Grant Nos.32072048 and U2004204)National Key Research and Development Program of China(Grant No.2023YFF1001200)+2 种基金China Rice Research Institute Basal Research Fund(Grant No.CPSIBRF-CNRRI-202404)Academician Workstation of National Nanfan Research Institute(Sanya),Chinese Agricultural Academic Science(CAAS),(Grant Nos.YBXM2422 and YBXM2423)Agricultural Science and Technology Innovation Program of CAAS,China.
文摘The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.
基金supported by the projects of the National Key Research and Development Program of China(2023YFD2300202)the Natural Science Foundation of Jiangsu Province,China(BK20241543)+5 种基金the National Natural Science Foundation of China(32272213,32030076,U1803235,and 32021004)the Fundamental Research Funds for the Central Universities,China(XUEKEN2023013)the Jiangsu Innovation Support Program for International Science and Technology Cooperation Project,China(BZ2023049)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(22)1006)the China Agriculture Research System(CARS-03)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP)。
文摘Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing plants to resist recurrent severe drought stress.However,the underlying mechanisms remain unclear.Here,we subjected wheat plants to drought priming during the vegetative growth stage and to severe drought stress at 10 days after anthesis.We then collected leaf samples at the ends of the drought priming and recovery periods,and at the end of drought stress for transcriptome sequencing in combination with phenotypic and physiological analyses.The drought-primed wheat plants maintained a lower plant temperature,with higher stomatal openness and photosynthesis,thereby resulting in much lower 1,000-grain weight and grain yield losses under the later drought stress than the non-primed plants.Interestingly,416 genes,including 27 transcription factors(e.g.,MYB,NAC,HSF),seemed to be closely related to the improved drought tolerance as indicated by the dynamic transcriptome analysis.Moreover,the candidate genes showed six temporal expression patterns and were significantly enriched in several stress response related pathways,such as plant hormone signal transduction,starch and sucrose metabolism,arginine and proline metabolism,inositol phosphate metabolism,and wax synthesis.These findings provide new insights into the physiological and molecular mechanisms of the long-term effects of early drought priming that can effectively improve drought tolerance in wheat,and may provide potential approaches for addressing the challenges of increasing abiotic stresses and securing food safety under global warming scenarios.
基金supported by the National Natural Science Foundation of China(31871622)the Key R&D Program of Shandong Province,China(2022LZG001)。
文摘FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especially the molecular mechanism through which FLZs function,are not well understood.In this study,we characterized 120FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase(SOD)and peroxidase(POD)activities and soluble sugar content,but a lower Na^(+)/K^(+)ratio and malondialdehyde(MDA)content than the wild type(WT)plants.Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between Ta FLZ54D transgenic wheat and the WT.Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.In summary,TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na^(+)absorption and mitigate oxidative stress.The interaction between TaFLZ54D and TaSGT1,as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins.
基金supported by Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding(Grant No.G20220628003-03)Chongqing Municipal People's Government and Chinese Academy of Agricultural Sciences strategic cooperation project,Key-Area Research and Development Program of Guangdong Province(Grant No.2020B020220001)+3 种基金the Earmarked Fund for Modern Agro-industry Technology Research System(Grant No.CARS-23)Science and Technology Innovation Program of the Chinese Academy of Agricultural Science(Grant No.CAAS-ASTIP-IVFCAAS)Central public-interest Scientific Institution Basal Research Fund(Grant No.Y2017PT52)the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China。
文摘Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.
基金supported by the European Union as a mobility grant
文摘Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.
基金supported by the National Major Science and Technology Project,China(No.J2019-Ⅳ-0007-0075)the Fundamental Research Funds for the Central Universities,China(No.JKF-20240036)。
文摘To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
基金Supported by the Natural Science Foundation of China,No.81970529the Natural Science Foundation of Jilin Province,No.20230508074RC and No.YDZJ202401218ZYTS.
文摘In this editorial,we comment on the article by Mu et al,published in the recent issue of the World Journal of Gastrointestinal Oncology.We pay special attention to the immune tolerance mechanism caused by hepatitis B virus(HBV)infection,the pathogenesis of hepatocellular carcinoma(HCC),and the role of antiviral therapy in treating HCC related to HBV infection.HBV infection leads to systemic innate immune tolerance by directly inhibiting pattern recognition receptor recognition and antiviral signaling pathways,as well as by inhibiting the immune functions of macrophages,natural killer cells and dendritic cells.In addition,HBV leads to an immunosuppressive cascade by expressing inhibitory molecules to induce exhaustion of HBV-specific cluster of differentiation 8+T cells,ultimately leading to long-term viral infection.The loss of immune cell function caused by HBV infection ultimately leads to HCC.Long-term antiviral therapy can improve the prognosis of patients with HCC and prevent tumor recurrence and metastasis.