期刊文献+
共找到58,206篇文章
< 1 2 250 >
每页显示 20 50 100
Coarse to Fine: The Role of Severe Plastic Deformation in Advancing Titanium-Based Medical Implants - A Comprehensive Review
1
作者 Dragana R Mihajlović Bojan I Međo +1 位作者 Ivana Lj Cvijović-Alagić Veljko R Djokić 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期295-306,共12页
This paper describes severe plastic deformation(SPD)procedures,which are utilized to form an ultrafine-grained structure in metallic biomaterials.During the SPD process,a solid material sample is subjected to very hig... This paper describes severe plastic deformation(SPD)procedures,which are utilized to form an ultrafine-grained structure in metallic biomaterials.During the SPD process,a solid material sample is subjected to very high loads without a significant change in sample dimensions.In the present work,the high-pressure torsion(HPT)process,as one of the SPD techniques,which achieves a high degree of deformation and ensures refinement of the microstructure,will be discussed in more detail.Considering that grain size control is accepted as a method to obtain materials with desired characteristics,an overview of the properties of ultrafine-grained titanium-based biomaterials to be used in medicine is given.Moreover,particular attention is dedicated to the influences of HPT process parameters,primarily hydrostatic pressure,and number of revolutions during torsion,on the grain size and physical and mechanical characteristics(modulus of elasticity,microhardness,and tensile properties),corrosion resistance,and biocompatibility of the titanium-based biomaterials.A review of the literature indicates that titanium-based materials obtained by the SPD process show improved mechanical and physical properties without losing biocompatibility and corrosion resistance,which suggests that these methods of obtaining implants are something that should be further developed in the future. 展开更多
关键词 high-pressure torsion process ultrafine-grained titanium-based materials electrochemical anodization physical properties mechanical properties
原文传递
Review on the latest developments in modified vanadium-titanium-based SCR catalysts 被引量:38
2
作者 Chuanmin Chen Yue Cao +2 位作者 Songtao Liu Jianmeng Chen Wenbo Jia 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第8期1347-1365,共19页
Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, ins... Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system. 展开更多
关键词 Vanadium‐titanium‐based catalyst Selectivecataly ticreductionLow‐temperature denitration Hg 0oxidation Slipammonia SO2 oxidation
在线阅读 下载PDF
Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification:Emerging opportunities and challenges
3
作者 Chu Wu Zhichao Dong +5 位作者 Jinfang Hou Jian Peng Shuangyu Wu Xiaofang Wang Xiangwei Kong Yue Jiang 《Chinese Chemical Letters》 2025年第3期16-26,共11页
Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials... Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials(EFMs),particularly high-end oxidation systems using eco-friendly nanomaterials,show promise for absorbing and degrading ECs.This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological,physical,and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification.Through meticulous comparison,we unequivocally advocate for the imperative integration of environmentally benign nanomaterials,notably titanium-based variants,in forthcoming methodologies.Our in-depth exploration scrutinizes the catalytic efficacy,underlying mechanisms,and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts.Additionally,strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios. 展开更多
关键词 Emerging contaminants ATRAZINE titanium-based nanomaterial Advanced oxidation processes Sustainable-by-design
原文传递
Mechanical and impact behaviour of titanium-based fiber metal laminates reinforced with kevlar and jute fibers under various stacking configurations
4
作者 V.Subramanian K.Logesh +1 位作者 Renjin J.Bright P.Hariharasakthisudhan 《Defence Technology(防务技术)》 2025年第11期19-30,共12页
The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.T... The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications. 展开更多
关键词 titanium-based fiber metal laminates(FMLs) Kevlar-jute hybrid fibers Mechanical properties Stacking configuration Drop-weight test
在线阅读 下载PDF
Progress in MOF-based catalyst design and reaction mechanisms for CO_(2)hydrogenation to methanol
5
作者 YU Zhifu JIANG Lei WU Mingbo 《燃料化学学报(中英文)》 北大核心 2026年第1期146-162,共17页
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon... Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies. 展开更多
关键词 CO_(2)hydrogenation metal-organic frameworks(MOFs) catalyst design reaction mechanism METHANOL
在线阅读 下载PDF
Mechanism of enhancing NH_(3)-SCR performance of Mn-Ce/AC catalyst by the structure regulation of activated carbon with calcite in coal
6
作者 NIU Jian LI Yuhang +4 位作者 BAI Baofeng WEN Chaolu LI Linbo ZHANG Huirong GUO Shaoqing 《燃料化学学报(中英文)》 北大核心 2026年第1期69-79,共11页
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ... To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced. 展开更多
关键词 CALCITE activated carbon structure Mn-Ce/AC catalyst NH_(3)-SCR performance
在线阅读 下载PDF
Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO_(2) Reduction Reaction
7
作者 Jianglong Liu Yunpeng Liu +5 位作者 Shunzheng Zhao Baotong Chen Guang Mo Zhongjun Chen Yuechang Wei Zhonghua Wu 《Nano-Micro Letters》 2026年第1期647-697,共51页
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr... Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application. 展开更多
关键词 Bismuth-based catalysts CO_(2)reduction reaction Regulation strategy Catalytic mechanism REVIEW
在线阅读 下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation 被引量:3
8
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
在线阅读 下载PDF
Bimetallic Single‑Atom Catalysts for Water Splitting 被引量:1
9
作者 Megha A.Deshmukh Aristides Bakandritsos Radek Zbořil 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期1-45,共45页
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ... Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process. 展开更多
关键词 Single-atom catalysts Single-atom dimers Hydrogen evolution Oxygen evolution Water splitting
在线阅读 下载PDF
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways 被引量:1
10
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation METHANOL ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
Boosted hydrodeoxygenation of lignin and its derivatives to cycloalkanes over Ni catalysts with surface decoration of AlPO_(4)species 被引量:1
11
作者 Xinyong Diao Linge Hao +2 位作者 Yawen Shi Shengbo Zhang Na Ji 《Journal of Energy Chemistry》 2025年第5期360-371,共12页
Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild condit... Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages. 展开更多
关键词 Nickel catalyst Heterogeneous catalysis LIGNIN HYDRODEOXYGENATION CYCLOALKANES
在线阅读 下载PDF
High-yield pentanes-plus production via hydrogenation of carbon dioxide:Revealing new roles of zirconia as promoter of iron catalyst with long-term stability 被引量:1
12
作者 Sheraz Ahmed Junjung Rohmat Sugiarto +6 位作者 Wonjoong Yoon Muhammad Irshad Heuntae Jo Syeda Sidra Bibi Soek Ki Kim Muhammad Kashif Khan Jaehoon Kim 《Journal of Energy Chemistry》 2025年第3期431-442,共12页
The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly... The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly ZrO_(2),have rarely been investigated.To plug this knowledge gap,a new Fe catalyst promoted with Na and partially reduced ZrO_(x)(Na-FeZrO_(x-9))was developed in this study;the catalyst helped produce C_(5+)hydrocarbons in remarkably high yield(26.3%at 360℃).In contrast to ZrO_(x)-free Fe-oxide,NaFeZrO_(x)-9 exhibited long-term stability for CO_(2)hydrogenation(750 h on-stream).The findings revealed multiple roles of ZrO_(x).Notably,ZrO_(x)decorated the Fe-oxide particles after calcination,thereby suppressing excess particle aggregation during the reaction,and acted as a"coke remover"to eliminate the carbon deposited on the catalyst surface.Additionally,oxygen vacancy(O_(v))sites in ZrO_(x)and electron transfer from ZrO_(x)to Fe sites facilitated the adsorption of CO_(2)at the Zr-Fe interface. 展开更多
关键词 CO_(2)hydrogenation C5+hydrocarbons Fe catalysts ZrO_(2)promoter Fischer Tropsch synthesis catalyst deactivation
在线阅读 下载PDF
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:2
13
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Highly dispersed MoO_(x)-Ru/C bimetallic catalyst for efficient hydrogenolysis of esters to alkanes 被引量:1
14
作者 Xincheng Cao Jiaping Zhao +5 位作者 Feng Long Peng Liu Yuguo Dong Zupeng Chen Junming Xu Jianchun Jiang 《Chinese Journal of Catalysis》 2025年第4期256-266,共11页
The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction tempera... The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction temperature(>250℃)is the prerequisite to ensure high conversion of esters.Here,we report a highly dispersed MoO_(x)-Ru/C bimetallic catalyst for the efficient hydrogenolysis of esters to alkanes under 150°C.The optimal catalyst exhibits>99%conversion of methyl stearate and 99%selectivity to diesel-range alkanes,reaching a high rate of up to 2.0 mmol gcat^(–1)h^(–1),5 times higher than that of Ru/C catalyst(MoO_(x)/C is inert).Integrated experimental and theoretical investigations attribute the high performance to the abundant MoO_(x)-Ru interfacial sites on the catalyst surface,which offers high activity for the C–O cleavage of esters.Furthermore,the dispersed MoO_(x)species significantly weaken the hydrocracking activity of the metallic Ru for C–C bonds,thus yielding alkane products without carbon loss.This study provides a facile and novel strategy for the design of high-performance heterogeneous catalysts for the hydrodeoxygenation of biomass-derived esters to alkane products. 展开更多
关键词 Bimetallic catalyst Interface engineering HYDRODEOXYGENATION Fatty esters Diesel-range alkanes
在线阅读 下载PDF
Optimization of Mg-based hydrogen storage materials with multicomponent and high-entropy catalysts 被引量:1
15
作者 Yu Sun Jiayi Cheng +2 位作者 Yaru Jiang Yafei Liu Yijing Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2699-2712,共14页
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma... Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems. 展开更多
关键词 magnesium hydride multicomponent materials high-entropy materials hydrogen storage catalyst doping kinetics
在线阅读 下载PDF
Catalytic Performance of Carbon Smoke over Ag-LSCF Composite Catalysts
16
作者 GUO Guanlun HAN Ming +3 位作者 LU Shaomin YU Jing JU Hongling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期30-34,共5页
To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha... To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity. 展开更多
关键词 metallic composites carbon smoke oxidation perovskite catalyst SOOT
原文传递
Promotion effect of Ce and Ta co-doping on the NH_(3)-SCR performance over V_(2)O_(5)/TiO_(2)catalyst 被引量:1
17
作者 Long Liu Xin Shen +4 位作者 Zhihua Lian Chunxi Lin Ying Zhu Wenpo Shan Hong He 《Journal of Environmental Sciences》 2025年第4期332-339,共8页
NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.A... NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity. 展开更多
关键词 NH_(3)-SCR Vanadia-based catalysts Synergistic effect CO-DOPING Low temperature
原文传递
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
18
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 catalyst-support interaction Supported catalysts HETEROINTERFACE Oxygen evolution reaction Zn-air batteries
在线阅读 下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
19
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling Oxygen evolution reaction Anion exchange membrane electrolyzer
在线阅读 下载PDF
Research progress of catalysts for synthesis of glycerol carbonate form glycerol and urea
20
作者 WANG Yuhua LI Hongguang +3 位作者 DING Liang KOU Yongli QI Wenbo ZHAO Ning 《燃料化学学报(中英文)》 北大核心 2025年第6期964-982,共19页
Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the perform... Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the performance of the catalysts still cannot meet the needs of industrialization.In this paper,research progress of the homogeneous and heterogeneous catalysts of the reaction over the past 20 years were reviewed systematically.According to the types and active centers of catalysts,the catalysts were classified systematically and analyzed in detail.The typical reaction mechanisms were also summarized.The research and development direction of catalysts is made more explicit through systematic classification and mechanism analysis.The article reveals more novel catalysts have been designed and used for the reaction,such as mixed metal oxides with special structures,solid wastes and non-metallic materials.This work summarized the current state of research and prospected possible routes for design of novel catalysts.It is hoped that this review can provide some references for developing efficient catalysts. 展开更多
关键词 glycerol carbonate GLYCEROL UREA catalystS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部