The sonocatalytic damage of bovine serum albumin (BSA) was studied in the presence of nanometer titanium dioxide (TiO2) powders by low frequency (80 kHz) ultrasound. The destruction of secondary structure and ch...The sonocatalytic damage of bovine serum albumin (BSA) was studied in the presence of nanometer titanium dioxide (TiO2) powders by low frequency (80 kHz) ultrasound. The destruction of secondary structure and change of α-helical structure of BSA were reflected by ultraviolet (UV) and circular dichroism (CD) spectroscopies.展开更多
The Dye Sensitized Solar Cell (DSSC) plays an important role because of low material cost, ease of production and high conversion efficiency as compared to other thin-film solar cell technologies. The main objective i...The Dye Sensitized Solar Cell (DSSC) plays an important role because of low material cost, ease of production and high conversion efficiency as compared to other thin-film solar cell technologies. The main objective is to create and find the best configuration of the solar cell based on materials that are inexpensive and highly efficient in solar energy conversion and subsequently test the efficiency of dye sensitized titanium dioxide solar cell. We begin the process with two glass plates coated with Fluorine tin oxide (FTO). Titanium dioxide is applied to the conductive side of one plate and the other plate is coated with graphite. A dye is adsorbed on to the TiO2 layer and then the plates are sandwiched together. A drop of iodide electrolyte is then added between the plates. The tests carried out indoors under a lamp emitting all wavelengths in the visible spectrum were not found to provide consistent data due to substantial heating of the cell. The outdoor tests carried out in natural sunlight exhibited steady voltage at much higher level. Future research will involve the incorporation of quantum dots instead of the organic dye as a sensitizer. Quantum dots have the advantages of providing tunable band gaps and the ability to absorb specific wavelength.展开更多
A simple and effective method of removing polluted organics in water is reported here.Titanium dioxide is a catalyst in photo-oxidation of monocrotophos.The mechanism of photocatalytic oxidation and the kinetics of th...A simple and effective method of removing polluted organics in water is reported here.Titanium dioxide is a catalyst in photo-oxidation of monocrotophos.The mechanism of photocatalytic oxidation and the kinetics of the reaction were studied. This same principle also leads to the construction of instrument of PTR-FIA analysis for monitoring organic phosphorus and phosphate in water.展开更多
Titanium is a very important element for several industrial applications, being one of the ninth most abundant elements in the Earth’s crust (0.63% wt). In this work it will discuss the different mining and industria...Titanium is a very important element for several industrial applications, being one of the ninth most abundant elements in the Earth’s crust (0.63% wt). In this work it will discuss the different mining and industrial activities involved in the production of titanium dioxide. The first step analyzed will treat about the beneficiation mining process of titanium mineral, and secondly, it will discuss the two main processes of the TiO2 manufacturing (sulphate and chloride routes). In addition, we will show different uses of the titanium dioxide pigment as filler in paper, plastics and rubber industries and as flux in glass manufacture, etc. Finally, we will show that the old wastes are currently called co-products since they were valorized, being commercialized by the Spanish industry of TiO2 production in different fields such as agriculture, civil engineering, or cement manufacturing.展开更多
TiO_(2)is one of the best-known environmentally friendly photocatalysts that has demonstrated the great potential to degrade a wide variety of organic foulants in water and wastewater treatment when placed under UV ra...TiO_(2)is one of the best-known environmentally friendly photocatalysts that has demonstrated the great potential to degrade a wide variety of organic foulants in water and wastewater treatment when placed under UV radiation.Currently,TiO_(2)-based photocatalytic membranes are at the forefront of photodegra-dation research and technical readiness.The membrane setup provides a high contact surface area for ef-fective filtration and degradation,without the necessary hassle of photocatalyst recovery after water and wastewater treatment.Meanwhile,TiO_(2)photocatalytic ceramic membranes have become an emerging re-search area due to the inherent chemical and mechanical stability of ceramic membranes,which enables them to outperform polymeric membranes.With the recent shift from polymeric to ceramic membranes in industrial applications,TiO_(2)photocatalytic ceramic membranes will become a key player among the next-generation ceramic membranes,as they are capable of multiple functionalities.This review provides a timely and focused investigation into the fabrication and application of such TiO_(2)photocatalytic ceramic membranes for water and wastewater treatment.The benefits of using photocatalytic ceramic membranes in filtration,such as a higher foulant removal efficiency,higher water permeability,and much improved antifouling capabilities,are highlighted and explained.Finally,the current research,technical readiness,and remaining gaps are identified,and a set of critical insights are provided using the available data to guide the developmental pathway of practical TiO_(2)photocatalytic ceramic membranes for water and wastewater treatment.展开更多
Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spect...Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.展开更多
In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which i...In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which is comprised of(NH4)2 S04 roasting,acid leaching,ammonium alum crystallization,silicic acid flocculation and Ti hydrolysis.The effects of relevant process parameters were systematically investigated.The re sults showed that under the optimal roasting and leaching conditions about 85%of titanium and 84.6%of aluminum could be extracted while only 30%of silicon entered the leachate.84%of Al^3+was crystallized from the leachate in the form of ammonium aluminum sulfate dodecahydrate with a purity up to 99.5 wt%.About 85%of the soluble silicic acid was flocculated with the aid of secondary alcohol polyoxyethylene ether 9(AEO-9)to yield a microporous SiO2 material(97.4 wt%)from the crystallized mother liquor.The Al-and Si-depleted solution was then hydrolyzed to generate a titanium dioxide(99.1 wt%)with uniform particle size distribution.It was figured out that approximately 146 kg TiO2 could be produced from 1000 kg of TBBF slag.Therefore,the improved process is a promising method for industrial application.展开更多
Nano-sized rod-like titanium dioxide (TiO2) filled rigid poly(vinyl chloride) (PVC) nanocomposites were prepared by using injection-molding method. Vicat, Charpy impact and tensile tests as well as thermogravime...Nano-sized rod-like titanium dioxide (TiO2) filled rigid poly(vinyl chloride) (PVC) nanocomposites were prepared by using injection-molding method. Vicat, Charpy impact and tensile tests as well as thermogravimetric and dynamic mechanical analyses were used to characterize the structure and properties of the nanocomposites. The results showed that nano-TiO2 could improve Vicat softening temperature and also improve thermal stability of PVC during the stages of dehydrochlorination and formation of carbonaceous conjugated polyene sequences, which can be ascribed to restriction of the nanoparticles on the segmental relaxation as being evidenced by raises in glass transition and β-relaxation temperatures of PVC upon filling TiO2. Addition of TiO2 nanoparticles less than 40 phr (parts per hundreds of resin) could significantly improve impact strength of the composites while the TiO2 agglomeration at high contents leads to a reduction in impact toughness.展开更多
Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the...Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the solid waste. This paper describes a novel route for indirect mineral carbonation of titanium-bearing blast furnace (TBBF) slag, in which the TBBF slag is roasted with recyclable (NH4)2SO4 (AS) at low temperatures and converted into the sulphates of various valuable metals, including calcium, magnesium, aluminium and titanium. High value added Ti-and Al-rich products can be obtained through stepwise precipitation of the leaching solution from the roasted slag. The NH3 produced during the roasting is used to capture CO2 from flue gases. The NH4HCO3 and (NH4)2CO3 thus obtained are used to carbonate the CaSO4-containing leaching residue and MgSO4-rich leaching solution, respectively. In this study, the process parameters and efficiency for the roasting, carbonation and Ti and Al recovery were investigated in detail. The results showed that the sulfation ratios of calcium, magnesium, titanium and aluminium reached 92.6%, 87% and 84.4%, respectively, after roasting at an AS-to-TBBF slag mass ratio of 2:1 and 350℃ for 2 h. The leaching solution was subjected to hydrolysis at 102℃ for 4 h with a Ti hydrolysis ratio of 95.7%and the purity of TiO2 in the calcined hydrolysate reached 98 wt%. 99.7% of aluminium in the Ti-depleted leaching solution was precipitated by using NH3. The carbonation products of Ca and Mg were CaCO3 and (NH4)2Mg(CO3)2·4H2O, respectively. The latter can be decomposed into MgCO3 at 100-200℃ with simultaneous recovery of the NH3 for reuse. In this process, approximately 82.1% of Ca and 84.2% of Mg in the TBBF slag were transformed into stable carbonates and the total CO2 sequestration capacity per ton of TBBF slag reached up to 239.7 kg. The TiO2 obtained can be used directly as an end product, while the Al-rich precipitate and the two carbonation products can act, respectively, as raw materials for electrolytic aluminium, cement and light magnesium carbonate production for the replacement of natural resources.展开更多
基金We greatly acknowledge the National Natural Science Foundation of China for financial support.
文摘The sonocatalytic damage of bovine serum albumin (BSA) was studied in the presence of nanometer titanium dioxide (TiO2) powders by low frequency (80 kHz) ultrasound. The destruction of secondary structure and change of α-helical structure of BSA were reflected by ultraviolet (UV) and circular dichroism (CD) spectroscopies.
文摘The Dye Sensitized Solar Cell (DSSC) plays an important role because of low material cost, ease of production and high conversion efficiency as compared to other thin-film solar cell technologies. The main objective is to create and find the best configuration of the solar cell based on materials that are inexpensive and highly efficient in solar energy conversion and subsequently test the efficiency of dye sensitized titanium dioxide solar cell. We begin the process with two glass plates coated with Fluorine tin oxide (FTO). Titanium dioxide is applied to the conductive side of one plate and the other plate is coated with graphite. A dye is adsorbed on to the TiO2 layer and then the plates are sandwiched together. A drop of iodide electrolyte is then added between the plates. The tests carried out indoors under a lamp emitting all wavelengths in the visible spectrum were not found to provide consistent data due to substantial heating of the cell. The outdoor tests carried out in natural sunlight exhibited steady voltage at much higher level. Future research will involve the incorporation of quantum dots instead of the organic dye as a sensitizer. Quantum dots have the advantages of providing tunable band gaps and the ability to absorb specific wavelength.
文摘A simple and effective method of removing polluted organics in water is reported here.Titanium dioxide is a catalyst in photo-oxidation of monocrotophos.The mechanism of photocatalytic oxidation and the kinetics of the reaction were studied. This same principle also leads to the construction of instrument of PTR-FIA analysis for monitoring organic phosphorus and phosphate in water.
基金This research has been partially supported by the Government of Andalusia’s project“Characterization and modelling of the phosphogypsum stacks from Huelva for their environmental management and control”(Ref.:RNM-6300) by National Institution of Higher Education,Science,Technology and Innovation of the Republic of Ecuador-(SENESCYT for its acronym in Spanish)+2 种基金The authors would like to acknowledge the financial support received from the company Tioxide-Huelva by the research projects“Valorization of red gypsum from the industrial production of titanium dioxide”(PROFIT,CIT-310200-2007-47)“Applications of red gypsum and Tionite waste in commercial applications”The authors also thank to the technical staff for the advisory provided in the explanation of the results.
文摘Titanium is a very important element for several industrial applications, being one of the ninth most abundant elements in the Earth’s crust (0.63% wt). In this work it will discuss the different mining and industrial activities involved in the production of titanium dioxide. The first step analyzed will treat about the beneficiation mining process of titanium mineral, and secondly, it will discuss the two main processes of the TiO2 manufacturing (sulphate and chloride routes). In addition, we will show different uses of the titanium dioxide pigment as filler in paper, plastics and rubber industries and as flux in glass manufacture, etc. Finally, we will show that the old wastes are currently called co-products since they were valorized, being commercialized by the Spanish industry of TiO2 production in different fields such as agriculture, civil engineering, or cement manufacturing.
基金supported by the National Research Foundation Singapore(NRF-CRP26-2021RS-0002,Advanced Porous Materials and Membranes for Liquid-Phase Hydrocarbon Separations),conducted at the National University of Singapore.
文摘TiO_(2)is one of the best-known environmentally friendly photocatalysts that has demonstrated the great potential to degrade a wide variety of organic foulants in water and wastewater treatment when placed under UV radiation.Currently,TiO_(2)-based photocatalytic membranes are at the forefront of photodegra-dation research and technical readiness.The membrane setup provides a high contact surface area for ef-fective filtration and degradation,without the necessary hassle of photocatalyst recovery after water and wastewater treatment.Meanwhile,TiO_(2)photocatalytic ceramic membranes have become an emerging re-search area due to the inherent chemical and mechanical stability of ceramic membranes,which enables them to outperform polymeric membranes.With the recent shift from polymeric to ceramic membranes in industrial applications,TiO_(2)photocatalytic ceramic membranes will become a key player among the next-generation ceramic membranes,as they are capable of multiple functionalities.This review provides a timely and focused investigation into the fabrication and application of such TiO_(2)photocatalytic ceramic membranes for water and wastewater treatment.The benefits of using photocatalytic ceramic membranes in filtration,such as a higher foulant removal efficiency,higher water permeability,and much improved antifouling capabilities,are highlighted and explained.Finally,the current research,technical readiness,and remaining gaps are identified,and a set of critical insights are provided using the available data to guide the developmental pathway of practical TiO_(2)photocatalytic ceramic membranes for water and wastewater treatment.
基金supported by Russian Science Foundation (No.#21-73-10235)
文摘Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.
基金financial support of the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)Sichuan University Postdoctoral Research and Development Fund(2017SCU12017)+1 种基金Project of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(18H0083)Sichuan Science and Technology Department Project(2019YJ0111)。
文摘In this study,a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum,and microporous silicon dioxide from titanium-bearing blast furnace slag(TBBF slag)was proposed,which is comprised of(NH4)2 S04 roasting,acid leaching,ammonium alum crystallization,silicic acid flocculation and Ti hydrolysis.The effects of relevant process parameters were systematically investigated.The re sults showed that under the optimal roasting and leaching conditions about 85%of titanium and 84.6%of aluminum could be extracted while only 30%of silicon entered the leachate.84%of Al^3+was crystallized from the leachate in the form of ammonium aluminum sulfate dodecahydrate with a purity up to 99.5 wt%.About 85%of the soluble silicic acid was flocculated with the aid of secondary alcohol polyoxyethylene ether 9(AEO-9)to yield a microporous SiO2 material(97.4 wt%)from the crystallized mother liquor.The Al-and Si-depleted solution was then hydrolyzed to generate a titanium dioxide(99.1 wt%)with uniform particle size distribution.It was figured out that approximately 146 kg TiO2 could be produced from 1000 kg of TBBF slag.Therefore,the improved process is a promising method for industrial application.
文摘Nano-sized rod-like titanium dioxide (TiO2) filled rigid poly(vinyl chloride) (PVC) nanocomposites were prepared by using injection-molding method. Vicat, Charpy impact and tensile tests as well as thermogravimetric and dynamic mechanical analyses were used to characterize the structure and properties of the nanocomposites. The results showed that nano-TiO2 could improve Vicat softening temperature and also improve thermal stability of PVC during the stages of dehydrochlorination and formation of carbonaceous conjugated polyene sequences, which can be ascribed to restriction of the nanoparticles on the segmental relaxation as being evidenced by raises in glass transition and β-relaxation temperatures of PVC upon filling TiO2. Addition of TiO2 nanoparticles less than 40 phr (parts per hundreds of resin) could significantly improve impact strength of the composites while the TiO2 agglomeration at high contents leads to a reduction in impact toughness.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)
文摘Large quantities of CO2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO2 emission reduction and comprehensive utilization of the solid waste. This paper describes a novel route for indirect mineral carbonation of titanium-bearing blast furnace (TBBF) slag, in which the TBBF slag is roasted with recyclable (NH4)2SO4 (AS) at low temperatures and converted into the sulphates of various valuable metals, including calcium, magnesium, aluminium and titanium. High value added Ti-and Al-rich products can be obtained through stepwise precipitation of the leaching solution from the roasted slag. The NH3 produced during the roasting is used to capture CO2 from flue gases. The NH4HCO3 and (NH4)2CO3 thus obtained are used to carbonate the CaSO4-containing leaching residue and MgSO4-rich leaching solution, respectively. In this study, the process parameters and efficiency for the roasting, carbonation and Ti and Al recovery were investigated in detail. The results showed that the sulfation ratios of calcium, magnesium, titanium and aluminium reached 92.6%, 87% and 84.4%, respectively, after roasting at an AS-to-TBBF slag mass ratio of 2:1 and 350℃ for 2 h. The leaching solution was subjected to hydrolysis at 102℃ for 4 h with a Ti hydrolysis ratio of 95.7%and the purity of TiO2 in the calcined hydrolysate reached 98 wt%. 99.7% of aluminium in the Ti-depleted leaching solution was precipitated by using NH3. The carbonation products of Ca and Mg were CaCO3 and (NH4)2Mg(CO3)2·4H2O, respectively. The latter can be decomposed into MgCO3 at 100-200℃ with simultaneous recovery of the NH3 for reuse. In this process, approximately 82.1% of Ca and 84.2% of Mg in the TBBF slag were transformed into stable carbonates and the total CO2 sequestration capacity per ton of TBBF slag reached up to 239.7 kg. The TiO2 obtained can be used directly as an end product, while the Al-rich precipitate and the two carbonation products can act, respectively, as raw materials for electrolytic aluminium, cement and light magnesium carbonate production for the replacement of natural resources.