Titanium hollow blades are characterized with lightweight and high structural strength, which are widely used in advanced aircraft engines nowadays. Superplastic forming/diffusion bonding (SPF/DB) combined with nume...Titanium hollow blades are characterized with lightweight and high structural strength, which are widely used in advanced aircraft engines nowadays. Superplastic forming/diffusion bonding (SPF/DB) combined with numerical control (NC) milling is a major solution for manufacturing titanium hollow blades. Due to the shape deviation caused by multiple heat and pressure cycles in the SPF/DB process, it is hard to manufacture the leading and tailing edges by the milling process. This paper presents a new adaptive machining approach using free-form deformation to solve this problem. The actual SPF/DB shape of a hollow blade was firstly inspected by an on-machine measurement method. The measured point data were matched to the nominal SPF/DB shape with an improved ICP algorithm afterwards, by which the point-pairs between the measurement points and their corresponding points on the nominal SPF/DB shape were established, and the maximum modification amount of the final nominal shape was constrained. Based on the displacements between the point-pairs, an accurate FFD volume was iteratively calculated. By embedding the final nominal shape in the deformation space, a new final shape of the hollow blade was built. Finally, a series of measurement and machining tests was performed, the results of which validated the feasibility of the proposed adaptive machining approach.展开更多
Removal of milling marks at the root fillet of titanium alloy blade is a tough work because of the interference between the polishing tool and the workpiece.A polishing method based on elastic magnetic tool was propos...Removal of milling marks at the root fillet of titanium alloy blade is a tough work because of the interference between the polishing tool and the workpiece.A polishing method based on elastic magnetic tool was proposed.The software ANSYS Maxwell was used to simulate the effect of different pole orientation arrangements on the magnetic field distribution.A comparison of polishing effect was made between elastic and inelastic magnetic pole carriers.The processing parameters of the elastic magnetic tool polishing for the blade root were optimized by orthogonal experiment(Taguchi)method.Results show that compared with the inelastic magnetic polishing tool,the elastic magnetic polishing tool with polyurethane as the pole carrier can effectively improve the surface quality of the polished workpiece.Under the optimal processing parameters(rotational speed=900 r/min,feeding rate=6 mm/min,machining gap=1.5 mm and abrasive size=10‒14μm),the original milling marks at the blade root are effectively removed and the average surface roughness Ra is dropped from 0.95μm to 0.12μm,which verifies the feasibility of the elastic magnetic polishing tool in the surface finishing of the titanium alloy blade root.展开更多
基金the financial supports of the National Natural Science Foundation of China(No.51475233)the Fundamental Research Funds for Central Universities(No.NZ2016107)the Jiangsu Innovation Program for Graduate Education(No.CXLX13_139)
文摘Titanium hollow blades are characterized with lightweight and high structural strength, which are widely used in advanced aircraft engines nowadays. Superplastic forming/diffusion bonding (SPF/DB) combined with numerical control (NC) milling is a major solution for manufacturing titanium hollow blades. Due to the shape deviation caused by multiple heat and pressure cycles in the SPF/DB process, it is hard to manufacture the leading and tailing edges by the milling process. This paper presents a new adaptive machining approach using free-form deformation to solve this problem. The actual SPF/DB shape of a hollow blade was firstly inspected by an on-machine measurement method. The measured point data were matched to the nominal SPF/DB shape with an improved ICP algorithm afterwards, by which the point-pairs between the measurement points and their corresponding points on the nominal SPF/DB shape were established, and the maximum modification amount of the final nominal shape was constrained. Based on the displacements between the point-pairs, an accurate FFD volume was iteratively calculated. By embedding the final nominal shape in the deformation space, a new final shape of the hollow blade was built. Finally, a series of measurement and machining tests was performed, the results of which validated the feasibility of the proposed adaptive machining approach.
基金Joint Funds of the National Natural Science Foundation of China(U20A20293)。
文摘Removal of milling marks at the root fillet of titanium alloy blade is a tough work because of the interference between the polishing tool and the workpiece.A polishing method based on elastic magnetic tool was proposed.The software ANSYS Maxwell was used to simulate the effect of different pole orientation arrangements on the magnetic field distribution.A comparison of polishing effect was made between elastic and inelastic magnetic pole carriers.The processing parameters of the elastic magnetic tool polishing for the blade root were optimized by orthogonal experiment(Taguchi)method.Results show that compared with the inelastic magnetic polishing tool,the elastic magnetic polishing tool with polyurethane as the pole carrier can effectively improve the surface quality of the polished workpiece.Under the optimal processing parameters(rotational speed=900 r/min,feeding rate=6 mm/min,machining gap=1.5 mm and abrasive size=10‒14μm),the original milling marks at the blade root are effectively removed and the average surface roughness Ra is dropped from 0.95μm to 0.12μm,which verifies the feasibility of the elastic magnetic polishing tool in the surface finishing of the titanium alloy blade root.