Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and pha...Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.展开更多
The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof...The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.展开更多
We describe the new mineral species titanium, ideally Ti, found in the podiform chromitites of the Luobusha ophiolite in Tibet, People's Republic of China. The irregular crystals range from 0.1 to 0.6 mm in diameter ...We describe the new mineral species titanium, ideally Ti, found in the podiform chromitites of the Luobusha ophiolite in Tibet, People's Republic of China. The irregular crystals range from 0.1 to 0.6 mm in diameter and form an intergrowth with coesite and kyanite. Titanium is silver grey in colour, the luster is metallic, it is opaque, the streak is grayish black, and it is non-fluorescent. The mineral is malleable, has a rough to hackly fracture and has no apparent cleavage. The estimated Mohs hardness is 4, and the calculated density is 4.503 g/cm3. The composition is Ti 99.23-100.00 wt%. The mineral is hexagonal, space group P6flmmc. Unit-cell parameters are a 2.950 (2) ~, c 4.686 (1) A,V 35.32 (5) A3, Z = 2. The five strongest powder diffraction lines [d in A (hkl) (I/I0)] are: 2.569 (010) (32), 2.254(011) (100), 1.730 (012) (16), 1.478 (110) (21), and 0.9464 (121) (8). The species and name were approved by the CNMNC (IMA 2010-044).展开更多
Ti60 (Ti-5.6A1-4.8Sn2Zr-1Mo-0.35Si-0.7Nd) is a high-temperature titanium alloy that is now used for important components of aircraft engines. Electrochemical machining (ECM) is a promising technique that has sever...Ti60 (Ti-5.6A1-4.8Sn2Zr-1Mo-0.35Si-0.7Nd) is a high-temperature titanium alloy that is now used for important components of aircraft engines. Electrochemical machining (ECM) is a promising technique that has several advantages, such as a high machining rate, and can be used on a wide range of difficult-to-process materials. In this paper, orthogonal experiments are conducted to investigate ECM of Ti60, with the aim of determining the influences of some electrochemical pro- cess parameters on the surface roughness. The most important parameter is found to be the frequency of the pulsed power supply. It is found that using suitably optimized parameters for ECM can greatly decrease the surface roughness ofa workpiece. A surface roughness of approximately 0.912 μm can be obtained with the following optimal parameters: NaC1 electrolyte concentration 13wt%, voltage 20 V, pulse frequency 0.4 kHz, duty cycle 0.3, temperature 23 ℃, and anode feed rate 0.5 mm/min. Furthermore, blisk blades have been successfully processed using these optimized parameters展开更多
Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of las...Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of laser additive repaired(LARed)specimen were investigated.The results show that,cellular substructures are observed in the laser deposited zone(LDZ),rather than the typicalαlaths morphology due to lack of enough subsequent thermal cycles.The cellular substructures lead to lower micro-hardness in the LDZ compared with the wrought substrate zone which consists of duplex microstructure.The tensile test results indicate that the tensile deformation process of the LARed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and fracture in the laser repaired zone with a mixed dimple and cleavage mode.The tensile strength of the LARed specimen is slightly higher than that of the wrought specimen and the elongation of11.7%is lower.展开更多
The Ti17(a+β)-Ti17(β)dual alloy-dual property blisk produced using Linear Friction Welding(LFW)is considered as high-performance component in advanced aeroengine.However,up to now,microstructure evolution and relati...The Ti17(a+β)-Ti17(β)dual alloy-dual property blisk produced using Linear Friction Welding(LFW)is considered as high-performance component in advanced aeroengine.However,up to now,microstructure evolution and relationship between microstructure and micro mechanical properties of LFWed Ti17(a+β)/Ti17(β)dissimilar joint have not been thoroughly revealed.In this work,complex analyses of the phase transformation mechanisms of the joint are conducted,and phase transformations in individual zones are correlated to their microhardness and nanohardness.Results reveal that a dissolution occurs under high temperatures encountered during LFW,which reduces microhardness of the joint to that of Ti17(a+β)and Ti17(β).In ThermoMechanically Affected Zone of Ti17(a+β)(TMAZ-(a+β))side joint,a large number of nanocrystalline a phases form with different orientations.This microstructure strengthens significantly by fine grains which balances partial softening effect of a dissolution,and increases nanohardness of a phase and microhardness of TMAZ-(a+β).Superlattice metastableβphase precipitates from metastableβin Weld Zone(WZ)during quick cooling following welding,because of short-range diffusion migration of solute atoms,especiallyβstabilizing elements Mo and Cr.The precipitation of the superlattice metastableβphase results in precipitation strengthening,which in turn increases nanohardness of metastableβand microhardness in WZ.展开更多
The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show ...The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness.展开更多
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ...Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.展开更多
In this work, the microstructure and the corresponding tensile properties of the rolled Ti-7Mo-3Nb-3Cr-3Al(Ti-7333) alloy before and after the thermal treatments were investigated. The results show that a strong α-fi...In this work, the microstructure and the corresponding tensile properties of the rolled Ti-7Mo-3Nb-3Cr-3Al(Ti-7333) alloy before and after the thermal treatments were investigated. The results show that a strong α-fiber texture is developed in the rolled Ti-7333 alloy. The deformed matrix and the texture significantly induce the variant selection of β phase. The high strength of the rolled Ti-7333 alloy is attributed to the <110> texture parallel to the tensile direction and the dispersed α phase within the matrix. After the solution treatment followed by the aging treatment, the texture decreases and the microstructure consists of the equiaxed β grains, the spheroidal α_p phase and various needle-like α variants. Eventually, the alloy could achieve an optimal combination with the strength of about 1450 MPa,the ductility of about 10.5% and a considerable shear strength of about 775 MPa. This balance can be ascribed to the performance of the spheroidal α_p phase and various needle-like α_s variants. The results indicate that the Ti-7333 alloy could be a promising candidate material for the high-strength fastener.展开更多
A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process. Si is used as an in-situ liquid forming phase and it is favorab...A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process. Si is used as an in-situ liquid forming phase and it is favorable for both the solid-liquid synthesis and the densification of Ti3SiC2 rainies. The present work demonstrated that the temperature fluctuation synthesis/simultaneous densification process is one of the most effective and simple methods for the preparation of Ti3SiC2 bulk materials providing relatively low synthesis temperature. short reaction time; and simultaneous synthesis and densification. This work also showed the capability to control the microstructure, e.g., the preferred orientation, of the bulk Ti3SiC2 materials simply by applying the hot pressing pressure at different Stages of the temperature fluctuation process. And textured Ti3SiC2 bulk materials with {002} faces of laminated Ti3SiC2 grains normal to the hot pressing axis were prepared.展开更多
The compressive yielding phenomenon of titanium alloys is not as focused and sufficiently ascertain as the tensile yielding phenomenon.In the present work,the peculiar compressive yielding behavior and the different d...The compressive yielding phenomenon of titanium alloys is not as focused and sufficiently ascertain as the tensile yielding phenomenon.In the present work,the peculiar compressive yielding behavior and the different dynamic responses of three different initial microstructures(singleβ,clavateβand lamellarβ)were investigated in an attractive metastableβtitanium alloy Ti-5553 using electron microscopes/crystallographic calculation/crystal plastic finite element simulation.Results reveal that the distinct compressive yielding behavior,steep peaks of sudden drop in the initial stage(very small true strain 0.03)of stress loading have appeared in the compression stress-strain curves except for the lamellarβinitial microstructure.Dislocation slip is the essential mechanism of the initial yielding behavior.Interlaced multiple-slip bands formed in the singleβinitial microstructure during the warm deformation process.A small quantity of single slip bands was observed in the deformed clavateβinitial microstructure.The abundant varied nano/ultrafineβsprecipitates were nucleated dynamically and dispersedly in all the three deformed initial microstructures.The multiple-slip bands formation and substantial nanoscaleβsresult in the highest peak of flow stress for singleβinitial microstructure.The compressive slip bands are formed early in the elastic–plastic deformation stage.As the increasing strain,the sample showed a significant compressive bulge,or eventually forming a strong adiabatic shear band or crack.These results are expected to provide a reference for the study of deformation behavior and mechanical properties of metastableβtitanium alloys.展开更多
The electrochemical behaviour of Ti(Ⅲ) and Ti(Ⅱ) in LiCl-KCl eutectic system has been studied by cyclic voltammetry and chronoamperometry.The cathodic reduction of Ti(Ⅲ) and Ti(Ⅱ) has been found to be stepwise:Ti(...The electrochemical behaviour of Ti(Ⅲ) and Ti(Ⅱ) in LiCl-KCl eutectic system has been studied by cyclic voltammetry and chronoamperometry.The cathodic reduction of Ti(Ⅲ) and Ti(Ⅱ) has been found to be stepwise:Ti(Ⅲ)+e=Ti(Ⅱ),Ti(Ⅱ)+2e =Ti.The reductions are diffusion controlled.When an equilibrium between Ti subchlorides and excess metallic Ti was estab- lished by reaction 2TiCl_3+Ti=3TiCl_2 in LiCl-KCl melt at 475℃,then the average valence of Ti is less than 2.1.In this system the diffusion coefficient for Ti(Ⅱ) ion was calculated as D=2.5×10^(-5)cm^2·s^(-1).The chronoamperometric studies showed that the initial nucleation stage and growth of nuclei were observed when Ti ions were electrodeposited on low carbon steel substrate. The investigation of nucleation of metal may provide the method for obtaining smooth,coherent and adherent deposits of titanium.展开更多
For simulating the real deactivation of hollow titanium silicalite(HTS) zeolite in commercial ammoximation process, HTS was treated by 10% NH_3·H_2O solution at 120 ℃ in stirred autoclave. It is found that a par...For simulating the real deactivation of hollow titanium silicalite(HTS) zeolite in commercial ammoximation process, HTS was treated by 10% NH_3·H_2O solution at 120 ℃ in stirred autoclave. It is found that a part of HTS zeolite crystals dissolved in the hot NH_3·H_2O solution, and the specific surface area and pore volume continuously decreased with the increase in NH_3 hydrothermal treatment time. Meanwhile, the transformation of framework Ti species into extraframework Ti species was detected by the spectroscopic methods. However, the extraframework Ti species were still in a highly dispersed state after the hydrothermal and thermal treatments as shown by TEM images, while the formation of new acid sites was not detected. Upon combining the results of characterization with catalytic performance of HTS, the main deactivation reason for this material had been determined, which might be attributed to the reduction of specific surface area and active centers after basic treatment and calcination of HTS samples. And then the possible mechanism of simulated deactivation of HTS zeolite was proposed, which could describe the elemental reaction steps much more visually and directly.展开更多
In this work, the current understanding and development of fliction-stir welding and processing of Ti- 6Al-4V alloy are briefly reviewed. The critical issues of these processes are addressed, including welding tool ma...In this work, the current understanding and development of fliction-stir welding and processing of Ti- 6Al-4V alloy are briefly reviewed. The critical issues of these processes are addressed, including welding tool materials and design, tool wea,, processing temperature, material flow, processing window and residual stresses. A particular emphasis is given to microstructural aspects and microstructure-properties relationship. Potential engineering applications are highlighted.展开更多
High-temperature titanium alloy for aeroengine compressor applications suffers from high-temperature oxidation and environmental corrosion, which prohibits long-term service of this kind alloy at temperatures above 60...High-temperature titanium alloy for aeroengine compressor applications suffers from high-temperature oxidation and environmental corrosion, which prohibits long-term service of this kind alloy at temperatures above 600℃. In an attempt to tackle this problem, Ti-48Al (at. pct) and Ti-48Al-12Cr (at. pct) protective coatings were plated on the substrate of alloy Ti-60 by arc ion plating (ALP) method. Isothermal and cyclic oxidation tests were performed in static air at elevated temperatures. Phase composition, morphology of the coatings and distribution of elements were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the Ti-48Al coating exhibited good isothermal oxidation resistance during exposure at 800℃, but poorer resistance against oxidation at 900℃. By contrast Ti-48Al-12Cr coating demonstrated excellent isothermal oxidation resistance at both temperatures. Cyclic oxidation tests performed at 800℃ indicated that resistance and no spallation of coatings was observed. But both coatings demonstrated good cyclic oxidation at 900℃ only Ti-48Al-12Cr coating demonstrated excellent cyclic oxidation resistance.展开更多
The Ti-35V-15Cr-0.05C (wt% is a new nonburning titanium alloy. The test for alloy combustibility was carried out by using CO2 laser. A 430 watt and 6mm diameter laser spot impinges directly on the sample within normal...The Ti-35V-15Cr-0.05C (wt% is a new nonburning titanium alloy. The test for alloy combustibility was carried out by using CO2 laser. A 430 watt and 6mm diameter laser spot impinges directly on the sample within normal atmospheric pressure and temperature. The results show that the ignition time of the nonburning titanium alloy is the longest in the eight examined titanium alloys, and is 3.5 times that of TC4 alloy. The ignition tempeerature of the nonburning alloy is 2991° C, and is higher than that of TC4 alloy by 1976°C. On the condition of high tempeerature and rich oxygen,the surface of alloy forms a melting layer which plays roles of oxygen insulation, heat insulation and burning products insulation. This is the mechanism of combustion resistance.展开更多
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
基金Projects(51172050,51102060,51302050)supported by the National Natural Science Foundation of ChinaProject(HIT.ICRST.2010009)supported by the Fundamental Research Funds for Central Universities,ChinaProject(HIT.NSRIF.2014129)supported by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China
文摘Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.
基金Project(20123021004) supported by the Key Program of the Aeronautical Science Foundation of ChinaProject(51312030501) supported by the Pre-Research Program of China
文摘The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.
基金supported by the National Natural Science Foundation of China (40472025, 40620120098,40872043)
文摘We describe the new mineral species titanium, ideally Ti, found in the podiform chromitites of the Luobusha ophiolite in Tibet, People's Republic of China. The irregular crystals range from 0.1 to 0.6 mm in diameter and form an intergrowth with coesite and kyanite. Titanium is silver grey in colour, the luster is metallic, it is opaque, the streak is grayish black, and it is non-fluorescent. The mineral is malleable, has a rough to hackly fracture and has no apparent cleavage. The estimated Mohs hardness is 4, and the calculated density is 4.503 g/cm3. The composition is Ti 99.23-100.00 wt%. The mineral is hexagonal, space group P6flmmc. Unit-cell parameters are a 2.950 (2) ~, c 4.686 (1) A,V 35.32 (5) A3, Z = 2. The five strongest powder diffraction lines [d in A (hkl) (I/I0)] are: 2.569 (010) (32), 2.254(011) (100), 1.730 (012) (16), 1.478 (110) (21), and 0.9464 (121) (8). The species and name were approved by the CNMNC (IMA 2010-044).
基金co-supported by the Natural Science Foundation of China(No.51205199)the Program for New Century Excellent Talents in University(NCET-12-0627)of China+2 种基金the Fundamental Research Funds for the Central Universities(NE2014104)of Chinathe Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX13_141)of Chinathe Fundamental Research Funds for the Central Universities of China
文摘Ti60 (Ti-5.6A1-4.8Sn2Zr-1Mo-0.35Si-0.7Nd) is a high-temperature titanium alloy that is now used for important components of aircraft engines. Electrochemical machining (ECM) is a promising technique that has several advantages, such as a high machining rate, and can be used on a wide range of difficult-to-process materials. In this paper, orthogonal experiments are conducted to investigate ECM of Ti60, with the aim of determining the influences of some electrochemical pro- cess parameters on the surface roughness. The most important parameter is found to be the frequency of the pulsed power supply. It is found that using suitably optimized parameters for ECM can greatly decrease the surface roughness ofa workpiece. A surface roughness of approximately 0.912 μm can be obtained with the following optimal parameters: NaC1 electrolyte concentration 13wt%, voltage 20 V, pulse frequency 0.4 kHz, duty cycle 0.3, temperature 23 ℃, and anode feed rate 0.5 mm/min. Furthermore, blisk blades have been successfully processed using these optimized parameters
基金Project(2016YFB11000100)supported by the National Key Technologies R&D Program,ChinaProject(KP201611)supported by Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(51475380)supported by the National Natural Science Foundation of China
文摘Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of laser additive repaired(LARed)specimen were investigated.The results show that,cellular substructures are observed in the laser deposited zone(LDZ),rather than the typicalαlaths morphology due to lack of enough subsequent thermal cycles.The cellular substructures lead to lower micro-hardness in the LDZ compared with the wrought substrate zone which consists of duplex microstructure.The tensile test results indicate that the tensile deformation process of the LARed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and fracture in the laser repaired zone with a mixed dimple and cleavage mode.The tensile strength of the LARed specimen is slightly higher than that of the wrought specimen and the elongation of11.7%is lower.
基金supported by the National Science and Technology Major Project,China(No.2017-VII-0005-0098)the National Natural Science Foundation of China(No.52105400)+1 种基金the State Key Laboratory of Solidification Processing,China(No.2021-TS-07)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2023008)。
文摘The Ti17(a+β)-Ti17(β)dual alloy-dual property blisk produced using Linear Friction Welding(LFW)is considered as high-performance component in advanced aeroengine.However,up to now,microstructure evolution and relationship between microstructure and micro mechanical properties of LFWed Ti17(a+β)/Ti17(β)dissimilar joint have not been thoroughly revealed.In this work,complex analyses of the phase transformation mechanisms of the joint are conducted,and phase transformations in individual zones are correlated to their microhardness and nanohardness.Results reveal that a dissolution occurs under high temperatures encountered during LFW,which reduces microhardness of the joint to that of Ti17(a+β)and Ti17(β).In ThermoMechanically Affected Zone of Ti17(a+β)(TMAZ-(a+β))side joint,a large number of nanocrystalline a phases form with different orientations.This microstructure strengthens significantly by fine grains which balances partial softening effect of a dissolution,and increases nanohardness of a phase and microhardness of TMAZ-(a+β).Superlattice metastableβphase precipitates from metastableβin Weld Zone(WZ)during quick cooling following welding,because of short-range diffusion migration of solute atoms,especiallyβstabilizing elements Mo and Cr.The precipitation of the superlattice metastableβphase results in precipitation strengthening,which in turn increases nanohardness of metastableβand microhardness in WZ.
基金Project(SKLSP201853) supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject(51625505) supported by the National Science Fund for Distinguished Young Scholars of China+1 种基金Project(U1537203) supported by the Key Program Project of the Joint Fund of Astronomy and National Natural Science Foundation of ChinaProject(KYQD1801) supported by the Scientific Research Foundation of Tianjin University of Technology and Education,China
文摘The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness.
基金financially supported by the National Key Research and Development Program of China(Grant No.2020YFB2008300)。
文摘Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.
基金financially supported by the National Natural Science Foundation of China(Grant No.51711530151)the Major State Research Development Program of China(Nos.2016YFB0701303 and 2016YFB0701305)
文摘In this work, the microstructure and the corresponding tensile properties of the rolled Ti-7Mo-3Nb-3Cr-3Al(Ti-7333) alloy before and after the thermal treatments were investigated. The results show that a strong α-fiber texture is developed in the rolled Ti-7333 alloy. The deformed matrix and the texture significantly induce the variant selection of β phase. The high strength of the rolled Ti-7333 alloy is attributed to the <110> texture parallel to the tensile direction and the dispersed α phase within the matrix. After the solution treatment followed by the aging treatment, the texture decreases and the microstructure consists of the equiaxed β grains, the spheroidal α_p phase and various needle-like α variants. Eventually, the alloy could achieve an optimal combination with the strength of about 1450 MPa,the ductility of about 10.5% and a considerable shear strength of about 775 MPa. This balance can be ascribed to the performance of the spheroidal α_p phase and various needle-like α_s variants. The results indicate that the Ti-7333 alloy could be a promising candidate material for the high-strength fastener.
基金the National Outstanding YOung Scientist Foundation Under Grant !No.59925208 the National Natural Science Foundation of China
文摘A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process. Si is used as an in-situ liquid forming phase and it is favorable for both the solid-liquid synthesis and the densification of Ti3SiC2 rainies. The present work demonstrated that the temperature fluctuation synthesis/simultaneous densification process is one of the most effective and simple methods for the preparation of Ti3SiC2 bulk materials providing relatively low synthesis temperature. short reaction time; and simultaneous synthesis and densification. This work also showed the capability to control the microstructure, e.g., the preferred orientation, of the bulk Ti3SiC2 materials simply by applying the hot pressing pressure at different Stages of the temperature fluctuation process. And textured Ti3SiC2 bulk materials with {002} faces of laminated Ti3SiC2 grains normal to the hot pressing axis were prepared.
基金supported by National Natural Science Foundation of China(51801156)Major State Research Development Program of China(2016YFB0701305)+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2018JQ5035)the Fundamental Research Funds for the Central Universities(G2017KY0310).
文摘The compressive yielding phenomenon of titanium alloys is not as focused and sufficiently ascertain as the tensile yielding phenomenon.In the present work,the peculiar compressive yielding behavior and the different dynamic responses of three different initial microstructures(singleβ,clavateβand lamellarβ)were investigated in an attractive metastableβtitanium alloy Ti-5553 using electron microscopes/crystallographic calculation/crystal plastic finite element simulation.Results reveal that the distinct compressive yielding behavior,steep peaks of sudden drop in the initial stage(very small true strain 0.03)of stress loading have appeared in the compression stress-strain curves except for the lamellarβinitial microstructure.Dislocation slip is the essential mechanism of the initial yielding behavior.Interlaced multiple-slip bands formed in the singleβinitial microstructure during the warm deformation process.A small quantity of single slip bands was observed in the deformed clavateβinitial microstructure.The abundant varied nano/ultrafineβsprecipitates were nucleated dynamically and dispersedly in all the three deformed initial microstructures.The multiple-slip bands formation and substantial nanoscaleβsresult in the highest peak of flow stress for singleβinitial microstructure.The compressive slip bands are formed early in the elastic–plastic deformation stage.As the increasing strain,the sample showed a significant compressive bulge,or eventually forming a strong adiabatic shear band or crack.These results are expected to provide a reference for the study of deformation behavior and mechanical properties of metastableβtitanium alloys.
文摘The electrochemical behaviour of Ti(Ⅲ) and Ti(Ⅱ) in LiCl-KCl eutectic system has been studied by cyclic voltammetry and chronoamperometry.The cathodic reduction of Ti(Ⅲ) and Ti(Ⅱ) has been found to be stepwise:Ti(Ⅲ)+e=Ti(Ⅱ),Ti(Ⅱ)+2e =Ti.The reductions are diffusion controlled.When an equilibrium between Ti subchlorides and excess metallic Ti was estab- lished by reaction 2TiCl_3+Ti=3TiCl_2 in LiCl-KCl melt at 475℃,then the average valence of Ti is less than 2.1.In this system the diffusion coefficient for Ti(Ⅱ) ion was calculated as D=2.5×10^(-5)cm^2·s^(-1).The chronoamperometric studies showed that the initial nucleation stage and growth of nuclei were observed when Ti ions were electrodeposited on low carbon steel substrate. The investigation of nucleation of metal may provide the method for obtaining smooth,coherent and adherent deposits of titanium.
基金financially supported by the National Basic Research Program of China(973 Program,2006CB202508)the China Petrochemical Corporation(SINOPEC Group 20673054)
文摘For simulating the real deactivation of hollow titanium silicalite(HTS) zeolite in commercial ammoximation process, HTS was treated by 10% NH_3·H_2O solution at 120 ℃ in stirred autoclave. It is found that a part of HTS zeolite crystals dissolved in the hot NH_3·H_2O solution, and the specific surface area and pore volume continuously decreased with the increase in NH_3 hydrothermal treatment time. Meanwhile, the transformation of framework Ti species into extraframework Ti species was detected by the spectroscopic methods. However, the extraframework Ti species were still in a highly dispersed state after the hydrothermal and thermal treatments as shown by TEM images, while the formation of new acid sites was not detected. Upon combining the results of characterization with catalytic performance of HTS, the main deactivation reason for this material had been determined, which might be attributed to the reduction of specific surface area and active centers after basic treatment and calcination of HTS samples. And then the possible mechanism of simulated deactivation of HTS zeolite was proposed, which could describe the elemental reaction steps much more visually and directly.
文摘In this work, the current understanding and development of fliction-stir welding and processing of Ti- 6Al-4V alloy are briefly reviewed. The critical issues of these processes are addressed, including welding tool materials and design, tool wea,, processing temperature, material flow, processing window and residual stresses. A particular emphasis is given to microstructural aspects and microstructure-properties relationship. Potential engineering applications are highlighted.
文摘High-temperature titanium alloy for aeroengine compressor applications suffers from high-temperature oxidation and environmental corrosion, which prohibits long-term service of this kind alloy at temperatures above 600℃. In an attempt to tackle this problem, Ti-48Al (at. pct) and Ti-48Al-12Cr (at. pct) protective coatings were plated on the substrate of alloy Ti-60 by arc ion plating (ALP) method. Isothermal and cyclic oxidation tests were performed in static air at elevated temperatures. Phase composition, morphology of the coatings and distribution of elements were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the Ti-48Al coating exhibited good isothermal oxidation resistance during exposure at 800℃, but poorer resistance against oxidation at 900℃. By contrast Ti-48Al-12Cr coating demonstrated excellent isothermal oxidation resistance at both temperatures. Cyclic oxidation tests performed at 800℃ indicated that resistance and no spallation of coatings was observed. But both coatings demonstrated good cyclic oxidation at 900℃ only Ti-48Al-12Cr coating demonstrated excellent cyclic oxidation resistance.
文摘The Ti-35V-15Cr-0.05C (wt% is a new nonburning titanium alloy. The test for alloy combustibility was carried out by using CO2 laser. A 430 watt and 6mm diameter laser spot impinges directly on the sample within normal atmospheric pressure and temperature. The results show that the ignition time of the nonburning titanium alloy is the longest in the eight examined titanium alloys, and is 3.5 times that of TC4 alloy. The ignition tempeerature of the nonburning alloy is 2991° C, and is higher than that of TC4 alloy by 1976°C. On the condition of high tempeerature and rich oxygen,the surface of alloy forms a melting layer which plays roles of oxygen insulation, heat insulation and burning products insulation. This is the mechanism of combustion resistance.