Graphical abstract Cases of widespread bone hydatid infection are relatively rare in clinical practice.In this study,we reported for the first time a validated integrated repair therapy for multiple bone tissues,inclu...Graphical abstract Cases of widespread bone hydatid infection are relatively rare in clinical practice.In this study,we reported for the first time a validated integrated repair therapy for multiple bone tissues,including the hip,femur,and knee,caused by echinococ cosis.Artificial intelligence(AI)was used to develop a targeted surgical plan and to design a personalized prosthesis.Finite element analysis(FEA)was used to optimize the mechanical effectiveness of a customized integrated replacement prosthesis and to model stress distribution in the surrounding bone.Three-dimensional(3 D)printing was used to fabricate a customized prosthesis.With the assistance of AI,FEA,and 3 D printing technology,a personalized surgical plan and customized prosthesis were successfully constructed based on the patient’s disease.This approach achieved a successful therapeutic effect,demonstrating that AI-assisted personalized medicine holds great promise for the future.展开更多
基金partially supported by the National Natural Science Foundation of China(Nos.32471474 and 82102574)the Precision Medicine Project of People’s Hospital of Xinjiang Uygur Autonomous Region(No.20220305)+4 种基金Chengdu Advanced Metal Materials Industry Technology Research Institute Co.,Ltd.Support Project(No.24H0802)Sichuan Science and Technology Program(Nos.2025YFHZ0086,2023YFS0053,2024YFHZ0125,and 2025ZNSFSC0381)Project of Tianfu Jincheng Laboratory(No.2025ZH009)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515220102)Xinjiang Autonomous Region Science and Technology Support Project Plan(Directive)Project(No.2024E02049)。
文摘Graphical abstract Cases of widespread bone hydatid infection are relatively rare in clinical practice.In this study,we reported for the first time a validated integrated repair therapy for multiple bone tissues,including the hip,femur,and knee,caused by echinococ cosis.Artificial intelligence(AI)was used to develop a targeted surgical plan and to design a personalized prosthesis.Finite element analysis(FEA)was used to optimize the mechanical effectiveness of a customized integrated replacement prosthesis and to model stress distribution in the surrounding bone.Three-dimensional(3 D)printing was used to fabricate a customized prosthesis.With the assistance of AI,FEA,and 3 D printing technology,a personalized surgical plan and customized prosthesis were successfully constructed based on the patient’s disease.This approach achieved a successful therapeutic effect,demonstrating that AI-assisted personalized medicine holds great promise for the future.