With the advantage of high light intensity due to low scatting, structural colors generated by metallic diffraction nanograting structures, used as a type of diffractive optical element, have shown great potential for...With the advantage of high light intensity due to low scatting, structural colors generated by metallic diffraction nanograting structures, used as a type of diffractive optical element, have shown great potential for application in industrial and scientific research fields such as optical anti-counterfeiting and sensors. Within the visible light wavelength range, the diffraction performance is highly dependent on the height and shape consistencies of the nanograting. However, there is still room for the improvement in the flexible control over structure formation through mechanical nanomachining within this scale. The novelty of this paper lies in proposing a machining strategy for nanograting structures with variable heights through precise regulation of the revolving trajectory using tip-based nano down-milling. It explores how different geometric features of trajectories impact the amount of material deformed into a grating and its distribution shape, referred to as undeformed grating area. By analyzing the forming mechanisms of nanogratings under various trajectories with finite element simulation, the desired undeformed grating area is successfully achieved, which is mainly extruded by the tip flank face to form the right facet of the grating, resulting in a small deformation degree and a high deformation efficiency. Three distinct types of revolving trajectories are filtered out according to five quantitative evaluation indicators for machining performance, namely material plastic deformation, grating profile consistency, grating height consistency, machining forces, and area transforming height, and then are compared in processing nanogratings with different heights. It is obtained that only by regulating the vertical vibration amplitude of the revolving trajectory, the semicircle trajectory with the optimal geometric features has the ability to machine high-quality nanograting structures with a continuous height variation of up to 220 nm in a spacing of 400 nm.展开更多
As one of the most widely used nanofabrication methods,the atomic force microscopy(AFM)tip-based nanomachining technique offers important advantages,including nanoscale manipulation accuracy,low maintenance cost,and f...As one of the most widely used nanofabrication methods,the atomic force microscopy(AFM)tip-based nanomachining technique offers important advantages,including nanoscale manipulation accuracy,low maintenance cost,and flexible experimental operation.This technique has been applied to one-,two-,and even three-dimensional nanomachining patterns on thin films made of polymers,metals,and two-dimensional materials.These structures are widely used in the fields of nanooptics,nanoelectronics,data storage,super lubrication,and so forth.Moreover,they are believed to have a wide application in other fields,and their possible industrialization may be realized in the future.In this work,the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented.First,the state of the structures machined on thin films is reviewed according to the type of thin-film materials(i.e.,polymers,metals,and two-dimensional materials).Second,the related applications of tip-based nanomachining to film machining are presented.Finally,the current situation of this area and its potential development direction are discussed.This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.展开更多
Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step...Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.展开更多
As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improvin...As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improving the production and lifestyle of the human.Photo lithography and other alternative technologies,such as nanoimprinting,electron beam lithography,focused ion beam cutting,and scanning probe lithography,have brought great progress of semiconductor industry,IC manufacturing and micro/nanoelectromechanical system(MEMS/NEMS)devices.However,there remains a lot of challenges,relating to the resolution,cost,speed,and so on,in realizing high-quality products with further development of nanotechnology.None of the existing techniques can satisfy all the needs in nanoscience and nanotechnology at the same time,and it is essential to explore new nanofabrication methods.As a newly developed scanning probe microscope(SPM)-based lithography,friction-induced nanofabrication provides opportunities for maskless,flexible,low-damage,low-cost and environment-friendly processing on a wide variety of materials,including silicon,quartz,glass surfaces,and so on.It has been proved that this fabrication route provides with a broad application prospect in the fabrication of nanoimprint templates,microfluidic devices,and micro/nano optical structures.This paper hereby involved the principals and operations of friction-induced nanofabrication,including friction-induced selective etching,and the applications were reviewed as well for looking ahead at opportunities and challenges with nanotechnology development.The present review will not only enrich the knowledge in nanotribology,but also plays a positive role in promoting SPM-based nanofabrication.展开更多
As a promising micro/nanofabrication method,electrical-assisted nanomachining has obtained substantial attention due to its high material removal rate and attainable superior surface quality.In this study,a rectangula...As a promising micro/nanofabrication method,electrical-assisted nanomachining has obtained substantial attention due to its high material removal rate and attainable superior surface quality.In this study,a rectangular wave electrical signal was applied for nanomachining by a customized tungsten tip.Owing to the coupling effect between the electric field and mechanical force,the cutting depth of the machined grooves can be expanded.In electrical-assisted groove processing,a depth of 270 nm and an aspect ratio of 0.6 on the copper sample can be achieved.The influence of operation parameters including applied voltage,frequency,duty ratio,normal force and cutting speed on the machining performance was investigated in terms of the groove depth,width,aspect ratio,and surface roughness.The potential machining mechanisms should be a combination of electric field force,nanoscale electric discharge,electric contact thermal effects,possible annealing behavior,and scraping and plowing actions induced by mechanical forces.展开更多
The field of optical lithography is subject to intense research and has gained enormous improvement.However,the effort necessary for creating structures at the size of 20 nm and below is considerable using conventiona...The field of optical lithography is subject to intense research and has gained enormous improvement.However,the effort necessary for creating structures at the size of 20 nm and below is considerable using conventional technologies.This effort and the resulting financial requirements can only be tackled by few global companies and thus a paradigm change for the semiconductor industry is conceivable:custom design and solutions for specific applications will dominate future development(Fritze in:Panning EM,Liddle JA(eds)Novel patterning technologies.International society for optics and photonics.SPIE,Bellingham,2021.https://doi.org/10.1117/12.2593229).For this reason,new aspects arise for future lithography,which is why enormous effort has been directed to the development of alternative fabrication technologies.Yet,the technologies emerging from this process,which are promising for coping with the current resolution and accuracy challenges,are only demonstrated as a proof-of-concept on a lab scale of several square micrometers.Such scale is not adequate for the requirements of modern lithography;therefore,there is the need for new and alternative cross-scale solutions to further advance the possibilities of unconventional nanotechnologies.Similar challenges arise because of the technical progress in various other fields,realizing new and unique functionalities based on nanoscale effects,e.g.,in nanophotonics,quantum computing,energy harvesting,and life sciences.Experimental platforms for basic research in the field of scale-spanning nanomeasuring and nanofabrication are necessary for these tasks,which are available at the Technische Universitiit Ilmenau in the form of nanopositioning and nanomeasuring(NPM)machines.With this equipment,the limits of technical structurability are explored for high-performance tip-based and laser-based processes for enabling real 3D nanofabrication with the highest precision in an adequate working range of several thousand cubic millimeters.展开更多
基金financial supports from the National Natural Science Foundation of China(52105434)China Postdoctoral Science Foundation(2022M710642).
文摘With the advantage of high light intensity due to low scatting, structural colors generated by metallic diffraction nanograting structures, used as a type of diffractive optical element, have shown great potential for application in industrial and scientific research fields such as optical anti-counterfeiting and sensors. Within the visible light wavelength range, the diffraction performance is highly dependent on the height and shape consistencies of the nanograting. However, there is still room for the improvement in the flexible control over structure formation through mechanical nanomachining within this scale. The novelty of this paper lies in proposing a machining strategy for nanograting structures with variable heights through precise regulation of the revolving trajectory using tip-based nano down-milling. It explores how different geometric features of trajectories impact the amount of material deformed into a grating and its distribution shape, referred to as undeformed grating area. By analyzing the forming mechanisms of nanogratings under various trajectories with finite element simulation, the desired undeformed grating area is successfully achieved, which is mainly extruded by the tip flank face to form the right facet of the grating, resulting in a small deformation degree and a high deformation efficiency. Three distinct types of revolving trajectories are filtered out according to five quantitative evaluation indicators for machining performance, namely material plastic deformation, grating profile consistency, grating height consistency, machining forces, and area transforming height, and then are compared in processing nanogratings with different heights. It is obtained that only by regulating the vertical vibration amplitude of the revolving trajectory, the semicircle trajectory with the optimal geometric features has the ability to machine high-quality nanograting structures with a continuous height variation of up to 220 nm in a spacing of 400 nm.
基金This study was funded by the National Natural Science Foundation of China(51911530206,52035004)Natural Science Foundation of Heilongjiang Province of China(YQ2020E015)Self-Planned Task(SKLRS202001C)of State Key Laboratory of Robotics and System(HIT),“Youth Talent Support Project”of the Chinese Association for Science and Technology,and the Fundamental Research Funds for the Central Universities.
文摘As one of the most widely used nanofabrication methods,the atomic force microscopy(AFM)tip-based nanomachining technique offers important advantages,including nanoscale manipulation accuracy,low maintenance cost,and flexible experimental operation.This technique has been applied to one-,two-,and even three-dimensional nanomachining patterns on thin films made of polymers,metals,and two-dimensional materials.These structures are widely used in the fields of nanooptics,nanoelectronics,data storage,super lubrication,and so forth.Moreover,they are believed to have a wide application in other fields,and their possible industrialization may be realized in the future.In this work,the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented.First,the state of the structures machined on thin films is reviewed according to the type of thin-film materials(i.e.,polymers,metals,and two-dimensional materials).Second,the related applications of tip-based nanomachining to film machining are presented.Finally,the current situation of this area and its potential development direction are discussed.This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.
基金supported by the Jilin Province Key Research and Development Plan Project(20240302066GX)the National Natural Science Foundation of China(Grant No.52075221)the Fundamental Research Funds for the Central Universities(2023-JCXK-02)。
文摘Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775462,51991373).
文摘As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improving the production and lifestyle of the human.Photo lithography and other alternative technologies,such as nanoimprinting,electron beam lithography,focused ion beam cutting,and scanning probe lithography,have brought great progress of semiconductor industry,IC manufacturing and micro/nanoelectromechanical system(MEMS/NEMS)devices.However,there remains a lot of challenges,relating to the resolution,cost,speed,and so on,in realizing high-quality products with further development of nanotechnology.None of the existing techniques can satisfy all the needs in nanoscience and nanotechnology at the same time,and it is essential to explore new nanofabrication methods.As a newly developed scanning probe microscope(SPM)-based lithography,friction-induced nanofabrication provides opportunities for maskless,flexible,low-damage,low-cost and environment-friendly processing on a wide variety of materials,including silicon,quartz,glass surfaces,and so on.It has been proved that this fabrication route provides with a broad application prospect in the fabrication of nanoimprint templates,microfluidic devices,and micro/nano optical structures.This paper hereby involved the principals and operations of friction-induced nanofabrication,including friction-induced selective etching,and the applications were reviewed as well for looking ahead at opportunities and challenges with nanotechnology development.The present review will not only enrich the knowledge in nanotribology,but also plays a positive role in promoting SPM-based nanofabrication.
基金financial support from National Natural Science Foundation of China(52075364,52205506)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University(ZZYJKT2023-09)+1 种基金the Guangdong International Cooperation Program of Science and Technology(2022A0505050078)the Open Fund of State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment,Guangdong University of Technology(JMDZ2021001).
文摘As a promising micro/nanofabrication method,electrical-assisted nanomachining has obtained substantial attention due to its high material removal rate and attainable superior surface quality.In this study,a rectangular wave electrical signal was applied for nanomachining by a customized tungsten tip.Owing to the coupling effect between the electric field and mechanical force,the cutting depth of the machined grooves can be expanded.In electrical-assisted groove processing,a depth of 270 nm and an aspect ratio of 0.6 on the copper sample can be achieved.The influence of operation parameters including applied voltage,frequency,duty ratio,normal force and cutting speed on the machining performance was investigated in terms of the groove depth,width,aspect ratio,and surface roughness.The potential machining mechanisms should be a combination of electric field force,nanoscale electric discharge,electric contact thermal effects,possible annealing behavior,and scraping and plowing actions induced by mechanical forces.
基金supported by the Deutsche Forschungsgemeinschaft(DFG)in the framework of the Research Training Group Tip-and Laser-based 3D-Nanofabrication in extended macroscopic working areas(GRK 2182)at the Technische Universitat Ilmenau,Germany.
文摘The field of optical lithography is subject to intense research and has gained enormous improvement.However,the effort necessary for creating structures at the size of 20 nm and below is considerable using conventional technologies.This effort and the resulting financial requirements can only be tackled by few global companies and thus a paradigm change for the semiconductor industry is conceivable:custom design and solutions for specific applications will dominate future development(Fritze in:Panning EM,Liddle JA(eds)Novel patterning technologies.International society for optics and photonics.SPIE,Bellingham,2021.https://doi.org/10.1117/12.2593229).For this reason,new aspects arise for future lithography,which is why enormous effort has been directed to the development of alternative fabrication technologies.Yet,the technologies emerging from this process,which are promising for coping with the current resolution and accuracy challenges,are only demonstrated as a proof-of-concept on a lab scale of several square micrometers.Such scale is not adequate for the requirements of modern lithography;therefore,there is the need for new and alternative cross-scale solutions to further advance the possibilities of unconventional nanotechnologies.Similar challenges arise because of the technical progress in various other fields,realizing new and unique functionalities based on nanoscale effects,e.g.,in nanophotonics,quantum computing,energy harvesting,and life sciences.Experimental platforms for basic research in the field of scale-spanning nanomeasuring and nanofabrication are necessary for these tasks,which are available at the Technische Universitiit Ilmenau in the form of nanopositioning and nanomeasuring(NPM)machines.With this equipment,the limits of technical structurability are explored for high-performance tip-based and laser-based processes for enabling real 3D nanofabrication with the highest precision in an adequate working range of several thousand cubic millimeters.