期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
用于说话人识别支持向量机模型的核函数选择 被引量:1
1
作者 钱海军 《计算机应用与软件》 CSCD 北大核心 2013年第4期258-260,共3页
支持向量机(SVM)已广泛地应用于文本无关的说话人辨认系统,不同的核函数影响识别性能。基于此,在TIMIT语料库上对线性核、多项式核以及径向基核进行了对比实验。实验表明多项式核在多项式次数等于6的情况下具有最佳的识别性能,其识别率... 支持向量机(SVM)已广泛地应用于文本无关的说话人辨认系统,不同的核函数影响识别性能。基于此,在TIMIT语料库上对线性核、多项式核以及径向基核进行了对比实验。实验表明多项式核在多项式次数等于6的情况下具有最佳的识别性能,其识别率可以达到82.88%。 展开更多
关键词 支持向量机 说话人辨认系统 核函数 TIMIT语料库
在线阅读 下载PDF
Development and Comparison of Numerical Fluxes for LWDG Methods
2
作者 Jianxian Qiu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第4期435-459,共25页
The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volu... The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax- Wendroff time discretization procedure is an altemative method for time discretization to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretization procedure (LWDG) based on different numerical fluxes for finite volume or finite difference schemes, including the first-order monotone fluxes such as the Lax-Friedfichs flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We systematically investigate the performance of the LWDG methods based on these different numerical fluxes for convection terms with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems. 展开更多
关键词 Discontinuous Galerkin method Lax-Wendroff type time discretization numerical flux approximate Riemann solver timiter WENO scheme high order accuracy.
在线阅读 下载PDF
基于HTK的连续语音识别系统及其在TIMIT上的实验 被引量:6
3
作者 涂俊辉 续晋华 《现代计算机》 2009年第11期29-33,共5页
介绍一个连续语音识别系统的构成以及HTK工具的使用,然后尝试利用该工具搭建一个连续语音识别系统,使用该系统在一个非特定人的大词汇量连续语音数据库——TIMIT上进行实验,讨论如何选择不同的声学单元进行建模,并且对模型的参数进行一... 介绍一个连续语音识别系统的构成以及HTK工具的使用,然后尝试利用该工具搭建一个连续语音识别系统,使用该系统在一个非特定人的大词汇量连续语音数据库——TIMIT上进行实验,讨论如何选择不同的声学单元进行建模,并且对模型的参数进行一系列的改进。 展开更多
关键词 连续语音识别 隐马尔可夫模型 HTK TIMIT
在线阅读 下载PDF
基于高斯混合模型及TIMIT语音库的说话人身份识别 被引量:3
4
作者 陈爱月 徐波 申子健 《信息通信》 2017年第7期51-52,共2页
高斯混合模型是指对样本的概率密度分布进行估计,可以看做是对几个高斯模型的加权和。在语音识别中,语音信号的复杂性以及不同采集情况下的随机性都很适合使用高斯混合模型进行估计,文章对高斯混合模型以及其在语音识别中的应用进行研究... 高斯混合模型是指对样本的概率密度分布进行估计,可以看做是对几个高斯模型的加权和。在语音识别中,语音信号的复杂性以及不同采集情况下的随机性都很适合使用高斯混合模型进行估计,文章对高斯混合模型以及其在语音识别中的应用进行研究,在MATLAB环境下,对算法程序进行分析,借助TIMIT语音库对算法进行实现。实验表明,高斯混合模型能够实现对语音信息的识别,并且能够为后续的研究提供框架。 展开更多
关键词 话者确认 高斯混合模型 最大似然估计 最大后验概率 TIMIT语音库
在线阅读 下载PDF
Estimating Age in Short Utterances Based on Multi-Class Classification Approach
5
作者 Ameer A.Badr Alia K.Abdul-Hassan 《Computers, Materials & Continua》 SCIE EI 2021年第8期1713-1729,共17页
Age estimation in short speech utterances finds many applications in daily life like human-robot interaction,custom call routing,targeted marketing,user-profiling,etc.Despite the comprehensive studies carried out to e... Age estimation in short speech utterances finds many applications in daily life like human-robot interaction,custom call routing,targeted marketing,user-profiling,etc.Despite the comprehensive studies carried out to extract descriptive features,the estimation errors(i.e.years)are still high.In this study,an automatic system is proposed to estimate age in short speech utterances without depending on the text as well as the speaker.Firstly,four groups of features are extracted from each utterance frame using hybrid techniques and methods.After that,10 statistical functionals are measured for each extracted feature dimension.Then,the extracted feature dimensions are normalized and reduced using the Quantile method and the Linear Discriminant Analysis(LDA)method,respectively.Finally,the speaker’s age is estimated based on a multi-class classification approach by using the Extreme Gradient Boosting(XGBoost)classifier.Experiments have been carried out on the TIMIT dataset to measure the performance of the proposed system.The Mean Absolute Error(MAE)of the suggested system is 4.68 years,and 4.98 years,the Root Mean Square Error(RMSE)is 8.05 and 6.97,respectively,for female and male speakers.The results show a clear relative improvement in terms of MAE up to 28%and 10%for female and male speakers,respectively,in comparison to related works that utilized the TIMIT dataset. 展开更多
关键词 Speaker age estimation XGBoost statistical functionals Quantile normalization LDA TIMIT dataset
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部