期刊文献+
共找到2,190篇文章
< 1 2 110 >
每页显示 20 50 100
Numerical Simulation Method of Meshless Reservoir Considering Time-Varying Connectivity Parameters
1
作者 Yuyang Liu Wensheng Zhou +4 位作者 Zhijie Wei Engao Tang Chenyang Shi Qirui Zhang Zifeng Chen 《Energy Engineering》 2025年第10期4245-4260,共16页
After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir develo... After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield. 展开更多
关键词 Meshless method parameters’time-varying numerical simulation production optimization block application
在线阅读 下载PDF
Precision motion control for electro-hydraulic axis systems under unknown time-variant parameters and disturbances 被引量:1
2
作者 Xiaowei YANG Yaowen GE +1 位作者 Wenxiang DENG Jianyong YAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期463-471,共9页
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ... This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well. 展开更多
关键词 Adaptive control Asymptotic convergence Electro-hydraulic axis system Precision motion control Unknown time-variant parameters and disturbances
原文传递
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
3
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(LSTM)neural network extended Kalman filter(EKF) rolling training time-varying parameters estimation missile dual control system
在线阅读 下载PDF
Parameter selection of support vector machine for function approximation based on chaos optimization 被引量:18
4
作者 Yuan Xiaofang Wang Yaonan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期191-197,共7页
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results... The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation. 展开更多
关键词 learning systems support vector machines (SVM) approximation theory parameter selection optimization.
在线阅读 下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
5
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection Support vector machine (SVM) RECURSIVE feature ELIMINATION (RFE) GENETIC algorithm (GA) parameter SELECTION
暂未订购
Parameter selection of support vector regression based on hybrid optimization algorithm and its application 被引量:9
6
作者 Xin WANG Chunhua YANG +1 位作者 Bin QIN Weihua GUI 《控制理论与应用(英文版)》 EI 2005年第4期371-376,共6页
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters... Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods, 展开更多
关键词 Support vector regression parameters tuning Hybrid optimization Genetic algorithm(GA)
在线阅读 下载PDF
Two-Parameter Vector-Valued Martingales and Geometrical Properties of Banach Spaces 被引量:6
7
作者 Cheng Ri-yan Gan Shi-xin 《Wuhan University Journal of Natural Sciences》 CAS 1999年第2期16-23,共8页
We obtained a number of inequalities and laws of large numbers for two parameter vector valued martingales.In the other direction we characterized p smoothness and q convexity of Banach spaces by using the... We obtained a number of inequalities and laws of large numbers for two parameter vector valued martingales.In the other direction we characterized p smoothness and q convexity of Banach spaces by using these inequalities and laws of large numbers for two parameter vector valued martingales. 展开更多
关键词 two parameter vector valued martingle inequality law of large numbers p smoothness q convexity
在线阅读 下载PDF
Fault Diagnosis Based on Fuzzy Support Vector Machine with Parameter Tuning and Feature Selection 被引量:10
8
作者 毛勇 夏铮 +2 位作者 尹征 孙优贤 万征 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第2期233-239,共7页
This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an e... This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an efficient parameter tuning procedure(based on minimization of radius/margin bound for SVM's leave-one-out errors)into a multi-class classification strategy using a fuzzy decision factor,which is named fuzzy support vector machine(FSVM).The datasets generated from the Tennessee Eastman process(TEP)simulator were used to evaluate the clas-sification performance.To decrease the negative influence of the auto-correlated and irrelevant variables,a key vari-able identification procedure using recursive feature elimination,based on the SVM is implemented,with time lags incorporated,before every classifier is trained,and the number of relatively important variables to every classifier is basically determined by 10-fold cross-validation.Performance comparisons are implemented among several kinds of multi-class decision machines,by which the effectiveness of the proposed approach is proved. 展开更多
关键词 fuzzy support vector machine parameter tuning fault diagnosis key variable identification
在线阅读 下载PDF
Inflatable Wing Design Parameter Optimization Using Orthogonal Testing and Support Vector Machines 被引量:12
9
作者 WANG Zhifei WANG Hua 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期887-895,共9页
The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing paramet... The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization. 展开更多
关键词 inflatable wing orthogonal test design parameter support vector machines optimization
原文传递
IDENTIFICATION OF TIME-VARYING MODAL PARAMETERS USING LINEAR TIME-FREQUENCY REPRESENTATION 被引量:3
10
作者 XuXiuzhong ZhangZhiyi +1 位作者 HuaHongxing ChenZhaoneng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期445-448,共4页
A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Usin... A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems. 展开更多
关键词 Linear time-varying system Modal parameter identification Hilberttransform Gabor expansion
在线阅读 下载PDF
A Novel PF-LSSVR-based Framework for Failure Prognosis of Nonlinear Systems with Time-varying Parameters 被引量:5
11
作者 CHEN Xiongzi YU Jinsong +1 位作者 TANG Diyin WANG Yingxun 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第5期715-724,共10页
Particle filtering (PF) is being applied successfully in nonlinear and/or non-Gaussian system failure prognosis. However, for failure prediction of many complex systems whose dynamic state evolution models involve t... Particle filtering (PF) is being applied successfully in nonlinear and/or non-Gaussian system failure prognosis. However, for failure prediction of many complex systems whose dynamic state evolution models involve time-varying parameters, the tradi- tional PF-based prognosis framework will probably generate serious deviations in results since it implements prediction through iterative calculation using the state models. To address the problem, this paper develops a novel integrated PF-LSSVR frame- work based on PF and least squares support vector regression (LSSVR) for nonlinear system failure prognosis. This approach employs LSSVR for long-term observation series prediction and applies PF-based dual estimation to collaboratively estimate the values of system states and parameters of the corresponding future time instances. Meantime, the propagation of prediction un- certainty is emphatically taken into account. Therefore, PF-LSSVR avoids over-dependency on system state models in prediction phase. With a two-sided failure definition, the probability distribution of system remaining useful life (RUL) is accessed and the corresponding methods of calculating performance evaluation metrics are put forward. The PF-LSSVR framework is applied to a three-vessel water tank system failure prognosis and it has much higher prediction accuracy and confidence level than traditional PF-based framework. 展开更多
关键词 prognostics and health management nonlinear systems failure prognosis particle filtering least squares supportvector regression time-varying parameter remaining useful life
原文传递
Adaptive Containment Control for Fractional-Order Nonlinear Multi-Agent Systems With Time-Varying Parameters 被引量:1
12
作者 Yang Liu Huaguang Zhang +1 位作者 Yingchun Wang Hongjing Liang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第9期1627-1638,共12页
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty gener... This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method. 展开更多
关键词 Adaptive backstepping control command filter fractional-order multi-agent system time-varying parameters
在线阅读 下载PDF
Identification of Time-Varying Modal Parameters for Thermo-Elastic Structure Subject to Unsteady Heating 被引量:1
13
作者 孙凯鹏 胡海岩 赵永辉 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期39-48,共10页
A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequenc... A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field.To demonstrate the method,the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field,and the dynamic outputs of the beam are first simulated as the measured data for the identification.Then,an improved time-varying autoregressive(TVAR)model is generated from the simulated input and output of the system.The time-varying coefficients of the TVAR model are expanded as a finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant.According to the BIC for preliminarily determining the scope of the order number,the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree(AGCD).Finally,the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method.The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation. 展开更多
关键词 THERMO-ELASTICITY time-varying modal parameter identification TVAR absolute grey correlation degree
在线阅读 下载PDF
TECHNICAL STABILITY OF NONLINEAR TIME-VARYING SYSTEMS WITH SMALL PARAMETERS
14
作者 楚天广 王照林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第11期1264-1271,共8页
Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condit... Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method. 展开更多
关键词 nonlinear time-varying system small parameter technical stability vector comparison principle reduced system linearization technique exponential asymptotic stability
在线阅读 下载PDF
Support vector classification algorithm based on variable parameter linear programming
15
作者 Xiao Jianhua Lin Jian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期355-359,共5页
To solve the problems of SVM in dealing with large sample size and asymmetric distributed samples, a support vector classification algorithm based on variable parameter linear programming is proposed. In the proposed ... To solve the problems of SVM in dealing with large sample size and asymmetric distributed samples, a support vector classification algorithm based on variable parameter linear programming is proposed. In the proposed algorithm, linear programming is employed to solve the optimization problem of classification to decrease the computation time and to reduce its complexity when compared with the original model. The adjusted punishment parameter greatly reduced the classification error resulting from asymmetric distributed samples and the detailed procedure of the proposed algorithm is given. An experiment is conducted to verify whether the proposed algorithm is suitable for asymmetric distributed samples. 展开更多
关键词 Support vector machine Linear programming CLASSIFICATION Variable parameter.
在线阅读 下载PDF
Optimal Parameter Estimation of Transmission Line Using Chaotic Initialized Time-Varying PSO Algorithm
16
作者 Abdullah Shoukat Muhammad Ali Mughal +3 位作者 Saifullah Younus Gondal Farhana Umer Tahir Ejaz Ashiq Hussain 《Computers, Materials & Continua》 SCIE EI 2022年第4期269-285,共17页
Transmission line is a vital part of the power system that connects two major points,the generation,and the distribution.For an efficient design,stable control,and steady operation of the power system,adequate knowled... Transmission line is a vital part of the power system that connects two major points,the generation,and the distribution.For an efficient design,stable control,and steady operation of the power system,adequate knowledge of the transmission line parameters resistance,inductance,capacitance,and conductance is of great importance.These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable.This paper presents a method to optimally estimate the parameters using the input-output quantities i.e.,voltages,currents,and power factor of the transmission line.The equivalentπ-network model is used and the terminal data i.e.,sending-end and receiving-end quantities are assumed as available measured data.The parameter estimation problem is converted to an optimization problem by formulating an error-minimizing objective function.An improved particle swarm optimization(PSO)in terms of time-varying control parameters and chaos-based initialization is used to optimally estimate the line parameters.Two cases are considered for parameter estimation,the first case is when the line conductance is neglected and in the second case,the conductance is considered into account.The results obtained by the improved algorithm are compared with the standard version of the algorithm,firefly algorithm and artificial bee colony algorithm for 30 number of trials.It is concluded that the improved algorithm is tremendously sufficient in estimating the line parameters in both cases validated by low error values and statistical analysis,comparatively. 展开更多
关键词 CHAOS parameter estimation transmission line time-varying particle swarm optimization pi-network
在线阅读 下载PDF
Parameter selection in time series prediction based on nu-support vector regression
17
作者 胡亮 Che Xilong 《High Technology Letters》 EI CAS 2009年第4期337-342,共6页
The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of paralle... The theory of nu-support vector regression (Nu-SVR) is employed in modeling time series variationfor prediction. In order to avoid prediction performance degradation caused by improper parameters, themethod of parallel multidimensional step search (PMSS) is proposed for users to select best parameters intraining support vector machine to get a prediction model. A series of tests are performed to evaluate themodeling mechanism and prediction results indicate that Nu-SVR models can reflect the variation tendencyof time series with low prediction error on both familiar and unfamiliar data. Statistical analysis is alsoemployed to verify the optimization performance of PMSS algorithm and comparative results indicate thattraining error can take the minimum over the interval around planar data point corresponding to selectedparameters. Moreover, the introduction of parallelization can remarkably speed up the optimizing procedure. 展开更多
关键词 parameter selection time series prediction nu-support vector regression (Nu-SVR) parallel multidimensional step search (PMSS)
在线阅读 下载PDF
Time-variant reliability analysis of three-dimensional slopes based on Support Vector Machine method 被引量:4
18
作者 陈昌富 肖治宇 张根宝 《Journal of Central South University》 SCIE EI CAS 2011年第6期2108-2114,共7页
In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. ... In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed. 展开更多
关键词 slope engineering Morgenstern-Price method three dimension Support vector Machine time-variant reliability
在线阅读 下载PDF
Calculation of Hildebrand Solubility Parameters of Some Polymers Using QSPR Methods Based on LS-SVM Technique and Theoretical Molecular Descriptors 被引量:3
19
作者 Nasser Goudarzi M.Arab Chamjangali A.H.Amin 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第5期587-594,共8页
In this work, some chemometrics methods are applied for the modeling and prediction of the Hildebrand solubility parameter of some polymers. A genetic algorithm (GA) method is designed for the selection of variables... In this work, some chemometrics methods are applied for the modeling and prediction of the Hildebrand solubility parameter of some polymers. A genetic algorithm (GA) method is designed for the selection of variables to construct two models using the multiple linear regression (MLR) and least square-support vector machine (LS-SVM) methods in order to predict the Hildebrand solubility parameter. The MLR method is used to build a linear relationship between the molecular descriptors and the Hildebrand solubility parameter for these compounds. Then the LS-SVM method is utilized to construct the non-linear quantitative structure-activity relationship (QSAR) models. The results obtained using the LS-SVM method are then compared with those obtained for the MLR method; it was revealed that the LS-SVM model was much better than the MLR one. The root-mean-square errors of the training set and the test set for the LS-SVM model were 0.2912 and 0.2427, and the correlation coefficients were 0.9662 and 0.9518, respectively. This paper provides a new and effective method for predicting the Hildebrand solubility parameter for some polymers, and also reveals that the LS-SVM method can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies. 展开更多
关键词 Hildebrand solubility parameter Least square-support vector machine (LS-SVM) Quantitative structure- property relationship (QSPR) Multiple linear regression (MLR) Genetic algorithm (GA).
原文传递
Identifi cation of model structure parameters via combination of AFMM and ARX from seismic response data 被引量:2
20
作者 Gong Maosheng Sun Jing Xie Lili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第3期411-423,共13页
To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive... To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test. 展开更多
关键词 parameter identification time-varying response model structure shaking table test
在线阅读 下载PDF
上一页 1 2 110 下一页 到第
使用帮助 返回顶部