A class of models for activity-driven networks is proposed in which nodes vary in two states: active and inactive. Only active nodes can receive links from others which represent instantaneous dynamical interactions....A class of models for activity-driven networks is proposed in which nodes vary in two states: active and inactive. Only active nodes can receive links from others which represent instantaneous dynamical interactions. The evolution of the network couples the addition of new nodes and state transitions of old ones. The active group changes with activated nodes entering and deactivated ones leaving. A general differential equation framework is developed to study the degree distribution of nodes of integrated networks where four different schemes are formulated.展开更多
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s...This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.展开更多
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into accoun...This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into account recent progress and addressing these concerns separately, there remains a lack of solutions offering theoretical guarantees for both privacy protection and constrained ZOO over time-varying unbalanced graphs.We hereby propose a novel algorithm, termed the differential privacy(DP) distributed push-sum based zeroth-order constrained optimization algorithm(DP-ZOCOA). Operating over time-varying unbalanced graphs, DP-ZOCOA obviates the need for supplemental suboptimization problem computations, thereby reducing overhead in comparison to distributed primary-dual methods. DP-ZOCOA is specifically tailored to tackle constrained ZOO problems over time-varying unbalanced graphs,offering a guarantee of convergence to the optimal solution while robustly preserving privacy. Moreover, we provide rigorous proofs of convergence and privacy for DP-ZOCOA, underscoring its efficacy in attaining optimal convergence without constraints. To enhance its applicability, we incorporate DP-ZOCOA into the federated learning framework and formulate a decentralized zeroth-order constrained federated learning algorithm(ZOCOA-FL) to address challenges stemming from the timevarying imbalance of communication topology. Finally, the performance and effectiveness of the proposed algorithms are thoroughly evaluated through simulations on distributed least squares(DLS) and decentralized federated learning(DFL) tasks.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac...Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.展开更多
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
This paper proposes a novel intelligent method for defining and solving the reservoir performance prediction problem within a manifold space,fully considering geological uncertainty and the characteristics of reservoi...This paper proposes a novel intelligent method for defining and solving the reservoir performance prediction problem within a manifold space,fully considering geological uncertainty and the characteristics of reservoirs performance under time-varying well control conditions,creating a surrogate model for reservoir performance prediction based on Conditional Evolutionary Generative Adversarial Networks(CE-GAN).The CE-GAN leverages conditional evolution in the feature space to direct the evolution of the generative network in previously uncontrollable directions,and transforms the problem of reservoir performance prediction into an image evolution problem based on permeability distribution,initial reservoir performance and time-varying well control,thereby enabling fast and accurate reservoir performance prediction under time-varying well control conditions.The experimental results in basic(egg model)and actual water-flooding reservoirs show that the model predictions align well with numerical simulations.In the basic reservoir model validation,the median relative residuals for pressure and oil saturation are 0.5%and 9.0%,respectively.In the actual reservoir model validation,the median relative residuals for both pressure and oil saturation are 4.0%.Regarding time efficiency,the surrogate model after training achieves approximately 160-fold and 280-fold increases in computational speed for the basic and actual reservoir models,respectively,compared with traditional numerical simulations.The reservoir performance prediction surrogate model based on the CE-GAN can effectively enhance the efficiency of production optimization.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
In engineering fields,time-varying matrix inversion(TVMI)issue is often encountered.Zeroing neural network(ZNN)has been extensively employed to resolve the TVMI problem.Nevertheless,the original ZNN(OZNN)and the integ...In engineering fields,time-varying matrix inversion(TVMI)issue is often encountered.Zeroing neural network(ZNN)has been extensively employed to resolve the TVMI problem.Nevertheless,the original ZNN(OZNN)and the integral-enhanced ZNN(IEZNN)usually fail to deal with the TVMI problem under unbounded noises,such as linear noises.Therefore,a neural network model that can handle the TVMI under linear noise interference is urgently needed.This paper develops a double integral-enhanced ZNN(DIEZNN)model based on a novel integral-type design formula with inherent linear-noise tolerance.Moreover,its convergence and robustness are verified by deriva-tion strictly.For comparison and verification,the OZNN and the IEZNN models are adopted to resolve the TVMI under multiple identical noise environments.The experi-ments proved that the DIEZNN model has excellent advantages in solving TVMI problems under linear noises.In general,the DIEZNN model is an innovative work and is proposed for the first time.Satisfyingly,the errors of DIEZNN are always less than 1�10−3 under linear noises,whereas the error norms of OZNN and IEZNN models are not convergent to zero.In addition,these models are applied to the control of the controllable permanent magnet synchronous motor chaotic system to indicate the superiority of the DIEZNN.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Li...This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.展开更多
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11665009)the Natural Science Research Project of Guizhou Provincial Education Bureau(Grant No.KY[2015]355)
文摘A class of models for activity-driven networks is proposed in which nodes vary in two states: active and inactive. Only active nodes can receive links from others which represent instantaneous dynamical interactions. The evolution of the network couples the addition of new nodes and state transitions of old ones. The active group changes with activated nodes entering and deactivated ones leaving. A general differential equation framework is developed to study the degree distribution of nodes of integrated networks where four different schemes are formulated.
基金Project supported by Jilin Provincial Science and Technology Development Plan(Grant No.20220101137JC).
文摘This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
基金supported in part by the National Key Research and Development Program of China(2022ZD0120001)the National Natural Science Foundation of China(62233004,62273090,62073076)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)
文摘This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into account recent progress and addressing these concerns separately, there remains a lack of solutions offering theoretical guarantees for both privacy protection and constrained ZOO over time-varying unbalanced graphs.We hereby propose a novel algorithm, termed the differential privacy(DP) distributed push-sum based zeroth-order constrained optimization algorithm(DP-ZOCOA). Operating over time-varying unbalanced graphs, DP-ZOCOA obviates the need for supplemental suboptimization problem computations, thereby reducing overhead in comparison to distributed primary-dual methods. DP-ZOCOA is specifically tailored to tackle constrained ZOO problems over time-varying unbalanced graphs,offering a guarantee of convergence to the optimal solution while robustly preserving privacy. Moreover, we provide rigorous proofs of convergence and privacy for DP-ZOCOA, underscoring its efficacy in attaining optimal convergence without constraints. To enhance its applicability, we incorporate DP-ZOCOA into the federated learning framework and formulate a decentralized zeroth-order constrained federated learning algorithm(ZOCOA-FL) to address challenges stemming from the timevarying imbalance of communication topology. Finally, the performance and effectiveness of the proposed algorithms are thoroughly evaluated through simulations on distributed least squares(DLS) and decentralized federated learning(DFL) tasks.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金Shanxi Scholarship Council of China(2022-141)Fundamental Research Program of Shanxi Province(202203021211096).
文摘Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
基金Supported by the National Natural Science Foundation of China Basic Science Center Project(72088101)National Natural Sciences Fund Projects(5207434552274036)。
文摘This paper proposes a novel intelligent method for defining and solving the reservoir performance prediction problem within a manifold space,fully considering geological uncertainty and the characteristics of reservoirs performance under time-varying well control conditions,creating a surrogate model for reservoir performance prediction based on Conditional Evolutionary Generative Adversarial Networks(CE-GAN).The CE-GAN leverages conditional evolution in the feature space to direct the evolution of the generative network in previously uncontrollable directions,and transforms the problem of reservoir performance prediction into an image evolution problem based on permeability distribution,initial reservoir performance and time-varying well control,thereby enabling fast and accurate reservoir performance prediction under time-varying well control conditions.The experimental results in basic(egg model)and actual water-flooding reservoirs show that the model predictions align well with numerical simulations.In the basic reservoir model validation,the median relative residuals for pressure and oil saturation are 0.5%and 9.0%,respectively.In the actual reservoir model validation,the median relative residuals for both pressure and oil saturation are 4.0%.Regarding time efficiency,the surrogate model after training achieves approximately 160-fold and 280-fold increases in computational speed for the basic and actual reservoir models,respectively,compared with traditional numerical simulations.The reservoir performance prediction surrogate model based on the CE-GAN can effectively enhance the efficiency of production optimization.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金National Natural Science Foundation of China,Grant/Award Numbers:61962023,62066015。
文摘In engineering fields,time-varying matrix inversion(TVMI)issue is often encountered.Zeroing neural network(ZNN)has been extensively employed to resolve the TVMI problem.Nevertheless,the original ZNN(OZNN)and the integral-enhanced ZNN(IEZNN)usually fail to deal with the TVMI problem under unbounded noises,such as linear noises.Therefore,a neural network model that can handle the TVMI under linear noise interference is urgently needed.This paper develops a double integral-enhanced ZNN(DIEZNN)model based on a novel integral-type design formula with inherent linear-noise tolerance.Moreover,its convergence and robustness are verified by deriva-tion strictly.For comparison and verification,the OZNN and the IEZNN models are adopted to resolve the TVMI under multiple identical noise environments.The experi-ments proved that the DIEZNN model has excellent advantages in solving TVMI problems under linear noises.In general,the DIEZNN model is an innovative work and is proposed for the first time.Satisfyingly,the errors of DIEZNN are always less than 1�10−3 under linear noises,whereas the error norms of OZNN and IEZNN models are not convergent to zero.In addition,these models are applied to the control of the controllable permanent magnet synchronous motor chaotic system to indicate the superiority of the DIEZNN.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金National Natural Science Foundation of China under Grants 62203338,61936004,61821003,62173259 and 62176192Postdoctoral Science Foundation of China under Grant 2022M722485.
文摘This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.