To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,t...To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,the question classifier draws both semantic and grammatical information into information retrieval and machine learning methods in the form of various training features,including the question word,the main verb of the question,the dependency structure,the position of the main auxiliary verb,the main noun of the question,the top hypernym of the main noun,etc.Then the QA query results are re-ranked by question class information.Experiments show that the questions in real-world web data sets can be accurately classified by the classifier,and the QA results after re-ranking can be obviously improved.It is proved that with both semantic and grammatical information,applications such as QA, built upon real-world web data sets, can be improved,thus showing better performance.展开更多
As for the satellite remote sensing data obtained by the visible and infrared bands myers,on, the clouds coverage in the sky over the ocean often results in missing data of inversion products on a large scale, and thi...As for the satellite remote sensing data obtained by the visible and infrared bands myers,on, the clouds coverage in the sky over the ocean often results in missing data of inversion products on a large scale, and thin clouds difficult to be detected would cause the data of the inversion products to be abnormal. Alvera et a1.(2005) proposed a method for the reconstruction of missing data based on an Empirical Orthogonal Functions (EOF) decomposition, but his method couldn't process these images presenting extreme cloud coverage(more than 95%), and required a long time for recon- struction. Besides, the abnormal data in the images had a great effect on the reconstruction result. Therefore, this paper tries to improve the study result. It has reconstructed missing data sets by twice applying EOF decomposition method. Firstly, the abnormity time has been detected by analyzing the temporal modes of EOF decomposition, and the abnormal data have been eliminated. Secondly, the data sets, excluding the abnormal data, are analyzed by using EOF decomposition, and then the temporal modes undergo a filtering process so as to enhance the ability of reconstruct- ing the images which are of no or just a little data, by using EOF. At last, this method has been applied to a large data set, i.e. 43 Sea Surface Temperature (SST) satellite images of the Changjiang River (Yangtze River) estuary and its adjacent areas, and the total reconstruction root mean square error (RMSE) is 0.82℃. And it has been proved that this improved EOF reconstruction method is robust for reconstructing satellite missing data and unreliable data.展开更多
In this paper, we consider the problem of the evaluation of system reliability using statistical data obtained from reliability tests of its elements, in which the lifetimes of elements are described using an exponent...In this paper, we consider the problem of the evaluation of system reliability using statistical data obtained from reliability tests of its elements, in which the lifetimes of elements are described using an exponential distribution. We assume that this lifetime data may be reported imprecisely and that this lack of precision may be described using fuzzy sets. As the direct application of the fuzzy sets methodology leads in this case to very complicated and time consuming calculations, we propose simple approximations of fuzzy numbers using shadowed sets introduced by Pedrycz (1998). The proposed methodology may be simply extended to the case of general lifetime probability distributions.展开更多
A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial partic...A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE.展开更多
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data...Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world.展开更多
A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking appl...A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.展开更多
An attempt of applying a novel genetic programming(GP) technique,a new member of evolution algorithms,has been made to predict the water storage of Wolonghu wetland response to the climate change in northeastern part ...An attempt of applying a novel genetic programming(GP) technique,a new member of evolution algorithms,has been made to predict the water storage of Wolonghu wetland response to the climate change in northeastern part of China with little data set.Fourteen years(1993-2006) of annual water storage and climatic data set of the wetland were taken for model training and testing.The results of simulations and predictions illustrated a good fit between calculated water storage and observed values(MAPE=9.47,r=0.99).By comparison,a multilayer perceptron(MLP)(a popular artificial neural network model) method and a grey model(GM) with the same data set were applied for performances estimation.It was found that GP technique had better performances than the other two methods both in the simulation step and predicting phase and the results were analyzed and discussed.The case study confirmed that GP method is a promising way for wetland managers to make a quick estimation of fluctuations of water storage in some wetlands under condition of little data set.展开更多
In gene prediction, the Fisher discriminant analysis (FDA) is used to separate protein coding region (exon) from non-coding regions (intron). Usually, the positive data set and the negative data set are of the same si...In gene prediction, the Fisher discriminant analysis (FDA) is used to separate protein coding region (exon) from non-coding regions (intron). Usually, the positive data set and the negative data set are of the same size if the number of the data is big enough. But for some situations the data are not sufficient or not equal, the threshold used in FDA may have important influence on prediction results. This paper presents a study on the selection of the threshold. The eigen value of each exon/intron sequence is computed using the Z-curve method with 69 variables. The experiments results suggest that the size and the standard deviation of the data sets and the threshold are the three key elements to be taken into consideration to improve the prediction results.展开更多
Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set compr...Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set comprising the Arctic region. This study compares the temperature trends in several surface, satellite and reanalysis data sets. We demonstrate large differences in the 1979-2002 temperature trends. Data sets disagree on the magnitude of the trends as well as on their seasonal, zonal and vertical pattern. It was found that the surface temperature trends are stronger than the trends in the tropospheric temperature for each latitude band north of 50?N for each month except for the months during the ice-melting season. These results emphasize that the conclusions of climate studies drawn on the basis of a single data set analysis should be treated with caution as they may be affected by the artificial biases in data.展开更多
This article states the poor database which is very common when being used them. So the demanding database must be all-round, effective collection. When the offering database is poor database, it will affect the appli...This article states the poor database which is very common when being used them. So the demanding database must be all-round, effective collection. When the offering database is poor database, it will affect the application of Supporter Deciding. To this question, the author brings out one solution to solve the poor database basing on the Rough Sets Theory. It can scientifically, correctly, effectively supplement the poor database, and can offer greatly help to enforce the application of data and artificial intelligence.展开更多
In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore,...In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed.展开更多
Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extension...Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological.展开更多
基金Microsoft Research Asia Internet Services in Academic Research Fund(No.FY07-RES-OPP-116)the Science and Technology Development Program of Tianjin(No.06YFGZGX05900)
文摘To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,the question classifier draws both semantic and grammatical information into information retrieval and machine learning methods in the form of various training features,including the question word,the main verb of the question,the dependency structure,the position of the main auxiliary verb,the main noun of the question,the top hypernym of the main noun,etc.Then the QA query results are re-ranked by question class information.Experiments show that the questions in real-world web data sets can be accurately classified by the classifier,and the QA results after re-ranking can be obviously improved.It is proved that with both semantic and grammatical information,applications such as QA, built upon real-world web data sets, can be improved,thus showing better performance.
基金The National Natural Science Foundation of China under contract Nos 40576080 and 40506036 the National"863" Project of China under contract No 2007AA12Z182
文摘As for the satellite remote sensing data obtained by the visible and infrared bands myers,on, the clouds coverage in the sky over the ocean often results in missing data of inversion products on a large scale, and thin clouds difficult to be detected would cause the data of the inversion products to be abnormal. Alvera et a1.(2005) proposed a method for the reconstruction of missing data based on an Empirical Orthogonal Functions (EOF) decomposition, but his method couldn't process these images presenting extreme cloud coverage(more than 95%), and required a long time for recon- struction. Besides, the abnormal data in the images had a great effect on the reconstruction result. Therefore, this paper tries to improve the study result. It has reconstructed missing data sets by twice applying EOF decomposition method. Firstly, the abnormity time has been detected by analyzing the temporal modes of EOF decomposition, and the abnormal data have been eliminated. Secondly, the data sets, excluding the abnormal data, are analyzed by using EOF decomposition, and then the temporal modes undergo a filtering process so as to enhance the ability of reconstruct- ing the images which are of no or just a little data, by using EOF. At last, this method has been applied to a large data set, i.e. 43 Sea Surface Temperature (SST) satellite images of the Changjiang River (Yangtze River) estuary and its adjacent areas, and the total reconstruction root mean square error (RMSE) is 0.82℃. And it has been proved that this improved EOF reconstruction method is robust for reconstructing satellite missing data and unreliable data.
文摘In this paper, we consider the problem of the evaluation of system reliability using statistical data obtained from reliability tests of its elements, in which the lifetimes of elements are described using an exponential distribution. We assume that this lifetime data may be reported imprecisely and that this lack of precision may be described using fuzzy sets. As the direct application of the fuzzy sets methodology leads in this case to very complicated and time consuming calculations, we propose simple approximations of fuzzy numbers using shadowed sets introduced by Pedrycz (1998). The proposed methodology may be simply extended to the case of general lifetime probability distributions.
文摘A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE.
文摘Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world.
基金Supported by National Natural Science Foundation of China(60675039)National High Technology Research and Development Program of China(863 Program)(2006AA04Z217)Hundred Talents Program of Chinese Academy of Sciences
文摘A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.
基金Sponsored by the National Basic Research Program of China(Grant No. 2006CB403302)the National Education Ministry foundation of China(Grant No.705011)the National Special Science and Technology Program Water Pollution Control and Treatment (Grant No.2009ZX07526-006,2008AX07208-001)
文摘An attempt of applying a novel genetic programming(GP) technique,a new member of evolution algorithms,has been made to predict the water storage of Wolonghu wetland response to the climate change in northeastern part of China with little data set.Fourteen years(1993-2006) of annual water storage and climatic data set of the wetland were taken for model training and testing.The results of simulations and predictions illustrated a good fit between calculated water storage and observed values(MAPE=9.47,r=0.99).By comparison,a multilayer perceptron(MLP)(a popular artificial neural network model) method and a grey model(GM) with the same data set were applied for performances estimation.It was found that GP technique had better performances than the other two methods both in the simulation step and predicting phase and the results were analyzed and discussed.The case study confirmed that GP method is a promising way for wetland managers to make a quick estimation of fluctuations of water storage in some wetlands under condition of little data set.
文摘In gene prediction, the Fisher discriminant analysis (FDA) is used to separate protein coding region (exon) from non-coding regions (intron). Usually, the positive data set and the negative data set are of the same size if the number of the data is big enough. But for some situations the data are not sufficient or not equal, the threshold used in FDA may have important influence on prediction results. This paper presents a study on the selection of the threshold. The eigen value of each exon/intron sequence is computed using the Z-curve method with 69 variables. The experiments results suggest that the size and the standard deviation of the data sets and the threshold are the three key elements to be taken into consideration to improve the prediction results.
文摘Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set comprising the Arctic region. This study compares the temperature trends in several surface, satellite and reanalysis data sets. We demonstrate large differences in the 1979-2002 temperature trends. Data sets disagree on the magnitude of the trends as well as on their seasonal, zonal and vertical pattern. It was found that the surface temperature trends are stronger than the trends in the tropospheric temperature for each latitude band north of 50?N for each month except for the months during the ice-melting season. These results emphasize that the conclusions of climate studies drawn on the basis of a single data set analysis should be treated with caution as they may be affected by the artificial biases in data.
文摘This article states the poor database which is very common when being used them. So the demanding database must be all-round, effective collection. When the offering database is poor database, it will affect the application of Supporter Deciding. To this question, the author brings out one solution to solve the poor database basing on the Rough Sets Theory. It can scientifically, correctly, effectively supplement the poor database, and can offer greatly help to enforce the application of data and artificial intelligence.
基金This research has been partially supported by the national natural science foundation of China (51175169) and the national science and technology support program (2012BAF02B01).
文摘In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed.
基金revised date May 14,2007 This work was partly supported by the UK EPSRC Grant(No.GR/S98603/01).
文摘Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological.