This paper deals with numerical solutions for nonlinear first-order boundary value problems(BVPs) with time-variable delay. For solving this kind of delay BVPs, by combining Runge-Kutta methods with Lagrange interpola...This paper deals with numerical solutions for nonlinear first-order boundary value problems(BVPs) with time-variable delay. For solving this kind of delay BVPs, by combining Runge-Kutta methods with Lagrange interpolation, a class of adapted Runge-Kutta(ARK) methods are developed. Under the suitable conditions, it is proved that ARK methods are convergent of order min{p, μ+ν +1}, where p is the consistency order of ARK methods and μ, ν are two given parameters in Lagrange interpolation. Moreover, a global stability criterion is derived for ARK methods. With some numerical experiments, the computational accuracy and global stability of ARK methods are further testified.展开更多
In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the loca...In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the local Lipschitz condition and polynomial growth condition, it is proved that the backward Euler-Maruyama method is strongly convergent. Additionally, the moment estimates and almost sure exponential stability for the analytical solution are proved. Also, under the appropriate condition, we show that the numerical solutions for the backward Euler-Maruyama methods are almost surely exponentially stable. A numerical experiment is given to illustrate the computational effectiveness and the theoretical results of the method.展开更多
Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the ...Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the authors present a machine learning-based risk prediction approach using routinely available clinical and laboratory parameters.Among the evaluated algorithms,a decision tree model demonstrated excellent discrimination,achieving an area under the curve of 0.951 in the validation set and notably identifying all true cases of delayed wound healing at the Youden index threshold.The inclusion of variables such as drainage duration,preoperative white blood cell and neutrophil counts,alongside age and sex,highlights the pragmatic appeal of the model for early postoperative monitoring.Nevertheless,several aspects warrant critical reflection,including the reliance on a postoperative variable(drainage duration),internal validation only,and certain reporting inconsistencies.This letter underscores both the promise and the limitations of adopting interpretable machine learning models in perioperative care.We advocate for transparent reporting,external validation,and careful consideration of clinically actionable timepoints before integration into practice.Ultimately,this work represents a valuable step toward precision risk stratification in gastric cancer surgery,and sets the stage for multicenter,prospective evaluations.展开更多
The purpose of this study is to explore nonhydrological mass transfer in China's Mainland.For this purpose,gravity recovery and climate experiment(GRACE)data were obtained to study the spatial distribution of time...The purpose of this study is to explore nonhydrological mass transfer in China's Mainland.For this purpose,gravity recovery and climate experiment(GRACE)data were obtained to study the spatial distribution of time variant gravity signals in China's Mainland.Then,from auxiliary hydrological data processed according to the current hydrological model,a new more comprehensive hydrological model of China's Mainland was constructed.Finally,the time variant signals of this new hydrological model were removed from the time variant gravity field computed from GRACE data,thus obtaining a description of the nonhydrological mass transfer of China's Mainland.The physical sources and mechanisms of the resulting mass transfer are then discussed.The improved,more realistic,hydrological model used here was created by selecting the hydrological components with the best correlations in existing hydrological models,by use of correlation calculation,analysis,and comparison.This improved model includes water in soils and deeper strata,in the vegetation canopy,in lakes,snow,and glaciers,and in other water components(mainly reservoir storage,swamps,and rivers).The spatial distribution of the transfer signals due to nonhydrological mass in China's Mainland was obtained by subtracting the combined hydrological model from the GRACE time-variable gravity field.The results show that the nonhydrological signals in China's Mainland collected in GRACE data were mainly positive signals,and were distributed in the Bohai Rim and the northern and eastern parts of the Tibetan Plateau.The above nonhydrological mass transfer signals have been studied further and are discussed.The results show that the nonhydrological mass migration signals in the Bohai Rim region originate primarily from sea level change and marine sediment accumulation.The mass accumulation from Indian plate collision in the Tibetan Plateau appears to be the main reason for the increase in the residual gravity field in that region.展开更多
The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,suc...The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site.展开更多
The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science a...The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science and has generated revolutionary changes.Because of natural phenomena such as climate warming,glacial melting,sea level rise,and earthquakes,earth science research has become an increasingly popular discipline in recent years.This article summarizes the importance of GRACE time-varying gravity,its application to geoscience,and its development.We analyzed the historical development and current status of GRACE time-varying gravity as well as research hotspots by searching the literature in the core collection databases of the China National Knowledge Infrastructure and the Web of Science over the past 20 years.The CiteSpace and VOSviewer software packages were applied with reference to the principle of literature metrology.Our investigation and analysis of characteristic indexes,such as the numbers of publications,co-occurrence of keywords,and co-citation of documents,uncovered the wide application and promotion of gravity satellites,especially GRACE time-varying gravity,in earth science.The results showed that the number of publications addressing GRACE data and time-varying gravity theory is increasing annually and that the USA,China,and Germany are the main producers.The Chinese Academy of Sciences,the National Aeronautics and Space Administration of the United States,and the Helmholtz Association of German Research Centres rank among the top three institutions in the world in terms of producing the most publications on this topic.We found that GRACE time-varying gravity plays unique roles in measuring changes in terrestrial water storage changes,ice and snow melting and sea level changes,and(co)seismic gravity changes,as well as in promoting other disciplines.展开更多
The Gravity Recovery and Climate Experiment(GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since2002. As large earthquakes cause significant mass changes on ...The Gravity Recovery and Climate Experiment(GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since2002. As large earthquakes cause significant mass changes on and under the Earth's surface,GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission,GRACE has successfully detected seismic gravitational changes of several giant earthquakes,which include the 2004 Sumatra–Andaman earthquake,2010 Maule(Chile) earthquake,and 2011 Tohoku-Oki(Japan) earthquake. In this review,we describe by examples how to process GRACE timevariable gravity data to retrieve seismic signals,and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application.展开更多
Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the leas...Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the least squares method,which models seasonal deformation as a constant seasonal amplitude and phase.However,the seasonal variations are not constant from year to year,and the seasonal amplitude and phase are time-variable.In order to obtain the time-variable seasonal signal in the GPS station coordinate time series,singular spectrum analysis(SSA)is conducted in this study.We firstly applied the SSA on simulated seasonal signals with different frequencies 1.00 cycle per year(cpy),1.04 cpy and with time-variable amplitude are superimposed.It was found that SSA can successfully obtain the seasonal variations with different frequencies and with time-variable amplitude superimposed.Then,SSA is carried out on the GPS observations in Yunnan Province.The results show that the time-variable amplitude seasonal signals are ubiquitous in Yunnan Province,and the timevariable amplitude change in 2019 in the region is extracted,which is further explained by the soil moisture mass loading and atmospheric pressure loading.After removing the two loading effects,the SSA obtained modulated seasonal signals which contain the obvious seasonal variations at frequency of 1.046 cpy,it is close with the GPS draconitic year,1.040 cpy.Hence,the time-variable amplitude changes in 2019 and the seasonal GPS draconitic year in the region could be discriminated successfully by SSA in Yunnan Province.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled p...The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.展开更多
In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave so...In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave solutions for this model under the influence of advection term and distributed delay.The obtained results indicate that weak kernel and strong kernel can both deduce the existence of periodic traveling wave solutions.Finally,we apply the main results in this paper to Logistic model and Nicholson’s blowflies model.展开更多
A Langevin delayed fractional system with multiple delays in control,is a delayed fractional system that includes delay parameters in both state and control,is first introduced.This paper is devoted to investigating t...A Langevin delayed fractional system with multiple delays in control,is a delayed fractional system that includes delay parameters in both state and control,is first introduced.This paper is devoted to investigating the relative controllability of the Langevin delayed fractional system with multiple delays in control.For linear systems to be relatively controllable,necessary and sufficient circumstances are identified by introducing and employing the Gramian matrix.The sufficient conditions for the relative controllability of semilinear systems are ofered based on Schauder's fixed point theorem.As an unusual approach,the controllability results of the delayed system are built for the first time on the exact solution produced by the MittagLeffler type function although controllability ones in the literature are built on the Volterra integral equations or the mild solutions produced by resolvent families.展开更多
The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivativ...The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.展开更多
Objective:The neurotoxicity of carbon monoxide(CO)to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning(DEACMP).Our previous study found that retinoic acid...Objective:The neurotoxicity of carbon monoxide(CO)to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning(DEACMP).Our previous study found that retinoic acid(RA)can suppress the neurotoxic effects of CO.This study further explores,in vivo and in vitro,the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.Methods:A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO,and a DEACMP animal model was established in adult Kunming mice.Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay and Annexin V/propidium iodide(PI)double staining.The transcriptional and protein expression of each gene was detected using real time fluorescence quantitative PCR(RT-qPCR)and Western blotting.Long noncoding RNA(lncRNA)SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes.In DEACMP mice,SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.Results:RA at 10 and 20μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes,downregulation of SNHG15 and LINGO-1,and upregulation of brain-derived neurotrophic factor(BDNF)and tyrosine kinase receptor B(TrkB)(all P<0.05).Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity(all P<0.05).Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels(all P<0.05).Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP(all P<0.05).Conclusion:RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes,thereby reducing central nervous system injury and exerting neuroprotective effects.LncRNA SNHG15 and LINGO-1 are key molecules mediating RA induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway.These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.展开更多
This paper deals with the problem of robust stabilization for uncertain Takagi-Sugeno(T-S)fuzzy neutral systems with input delays and distributed delays.The purpose is to design a state feedback fuzzy controller with ...This paper deals with the problem of robust stabilization for uncertain Takagi-Sugeno(T-S)fuzzy neutral systems with input delays and distributed delays.The purpose is to design a state feedback fuzzy controller with a H∞performance such that the resulting closed-loop system is robustly stable.Sufficient conditions for the solvability of the problem are obtained by utilizing proper Lyapunov functional together with the linear matrix inequality(LMI)approach,especially two different improved results on robust H∞controller design with relaxed conditions are obtained.Finally,we provide two examples to verify the effectiveness of our design method and give some principle for choosing the proper controller under certain circumstances.展开更多
To provide an energy-efficient and slab-demand-compliant rolling delay strategy,the simulation software is utilized to calculate the rolling delay process of the reheating furnace.Based on energy consumption evaluatio...To provide an energy-efficient and slab-demand-compliant rolling delay strategy,the simulation software is utilized to calculate the rolling delay process of the reheating furnace.Based on energy consumption evaluation,two optimization methods were employed.The bisection approach uses the needs of the slab to estimate the rolling delay temperature,and the golden section search method uses the energy consumption analysis of the slab to determine the high-temperature insulation duration.Generally,the slab closest to the discharge position in the control zone is selected as the optimization target.The optimized slab does not show a significant temperature rise after the end of the rolling delay process.When comparing the optimized rolling delay strategies with the traditional ones,the optimized rolling delay strategies not only meet the output requirements for slabs but also offer significant advantages in terms of energy efficiency,and this advantage increases with rolling delay time.展开更多
We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the...We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.展开更多
In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attra...In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attractor in C_(Hg) is equal to the global attractor in C_(Vg).展开更多
We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with du...We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with dual tunable couplers,where each coupler comprises two 2×2 multimode interferometers and a MZI phase-tuning section.Experimental results demonstrate continuous delay tuning from 0 to 293 ps through synchronized control of coupling coefficients,corresponding to a 4 cm path difference between interferometer arms.The measured delay range exhibits excellent agreement with theoretical predictions derived from ODL waveguide parameters.This result addresses critical challenges in integrated photonic systems that require precise temporal control,particularly for applications in optical communications and quantum information processing,where a wide tuning range is paramount.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12471379).
文摘This paper deals with numerical solutions for nonlinear first-order boundary value problems(BVPs) with time-variable delay. For solving this kind of delay BVPs, by combining Runge-Kutta methods with Lagrange interpolation, a class of adapted Runge-Kutta(ARK) methods are developed. Under the suitable conditions, it is proved that ARK methods are convergent of order min{p, μ+ν +1}, where p is the consistency order of ARK methods and μ, ν are two given parameters in Lagrange interpolation. Moreover, a global stability criterion is derived for ARK methods. With some numerical experiments, the computational accuracy and global stability of ARK methods are further testified.
基金supported by National Natural Science Foundation of China (Grant No. 11571128)
文摘In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the local Lipschitz condition and polynomial growth condition, it is proved that the backward Euler-Maruyama method is strongly convergent. Additionally, the moment estimates and almost sure exponential stability for the analytical solution are proved. Also, under the appropriate condition, we show that the numerical solutions for the backward Euler-Maruyama methods are almost surely exponentially stable. A numerical experiment is given to illustrate the computational effectiveness and the theoretical results of the method.
文摘Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the authors present a machine learning-based risk prediction approach using routinely available clinical and laboratory parameters.Among the evaluated algorithms,a decision tree model demonstrated excellent discrimination,achieving an area under the curve of 0.951 in the validation set and notably identifying all true cases of delayed wound healing at the Youden index threshold.The inclusion of variables such as drainage duration,preoperative white blood cell and neutrophil counts,alongside age and sex,highlights the pragmatic appeal of the model for early postoperative monitoring.Nevertheless,several aspects warrant critical reflection,including the reliance on a postoperative variable(drainage duration),internal validation only,and certain reporting inconsistencies.This letter underscores both the promise and the limitations of adopting interpretable machine learning models in perioperative care.We advocate for transparent reporting,external validation,and careful consideration of clinically actionable timepoints before integration into practice.Ultimately,this work represents a valuable step toward precision risk stratification in gastric cancer surgery,and sets the stage for multicenter,prospective evaluations.
基金supported by the National Natural Science Foundation of China(41974093,41774088,42174097)the Frontier Science of Chinese Academy of Sciences(qyzdy-sswsys003)+1 种基金China Postdoctoral Science Foundation(2020T130641 and 2020M670424)Fundamental Research Funds for the Central Universities.
文摘The purpose of this study is to explore nonhydrological mass transfer in China's Mainland.For this purpose,gravity recovery and climate experiment(GRACE)data were obtained to study the spatial distribution of time variant gravity signals in China's Mainland.Then,from auxiliary hydrological data processed according to the current hydrological model,a new more comprehensive hydrological model of China's Mainland was constructed.Finally,the time variant signals of this new hydrological model were removed from the time variant gravity field computed from GRACE data,thus obtaining a description of the nonhydrological mass transfer of China's Mainland.The physical sources and mechanisms of the resulting mass transfer are then discussed.The improved,more realistic,hydrological model used here was created by selecting the hydrological components with the best correlations in existing hydrological models,by use of correlation calculation,analysis,and comparison.This improved model includes water in soils and deeper strata,in the vegetation canopy,in lakes,snow,and glaciers,and in other water components(mainly reservoir storage,swamps,and rivers).The spatial distribution of the transfer signals due to nonhydrological mass in China's Mainland was obtained by subtracting the combined hydrological model from the GRACE time-variable gravity field.The results show that the nonhydrological signals in China's Mainland collected in GRACE data were mainly positive signals,and were distributed in the Bohai Rim and the northern and eastern parts of the Tibetan Plateau.The above nonhydrological mass transfer signals have been studied further and are discussed.The results show that the nonhydrological mass migration signals in the Bohai Rim region originate primarily from sea level change and marine sediment accumulation.The mass accumulation from Indian plate collision in the Tibetan Plateau appears to be the main reason for the increase in the residual gravity field in that region.
基金the National Natural Science Foundation of China(Nos.41974095,41774090,and U1939205)the Special Fund of the Institute of Geophysics,China Earthquake Administration(Nos.DQJB20X09,and DQJB21R30)The first author acknowledges support from the China Postdoctoral Science Foundation(No.2018M641424)。
文摘The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site.
基金supported by the National Natural Science Foundation of China(Grant Nos.42174097,41974093,and 41774088).
文摘The Gravity Recovery and Climate Experiment(GRACE)is the most important gravity satellite to date in human history.Since its launch in 2002,GRACE time-varying gravity has had an unprecedented impact on earth science and has generated revolutionary changes.Because of natural phenomena such as climate warming,glacial melting,sea level rise,and earthquakes,earth science research has become an increasingly popular discipline in recent years.This article summarizes the importance of GRACE time-varying gravity,its application to geoscience,and its development.We analyzed the historical development and current status of GRACE time-varying gravity as well as research hotspots by searching the literature in the core collection databases of the China National Knowledge Infrastructure and the Web of Science over the past 20 years.The CiteSpace and VOSviewer software packages were applied with reference to the principle of literature metrology.Our investigation and analysis of characteristic indexes,such as the numbers of publications,co-occurrence of keywords,and co-citation of documents,uncovered the wide application and promotion of gravity satellites,especially GRACE time-varying gravity,in earth science.The results showed that the number of publications addressing GRACE data and time-varying gravity theory is increasing annually and that the USA,China,and Germany are the main producers.The Chinese Academy of Sciences,the National Aeronautics and Space Administration of the United States,and the Helmholtz Association of German Research Centres rank among the top three institutions in the world in terms of producing the most publications on this topic.We found that GRACE time-varying gravity plays unique roles in measuring changes in terrestrial water storage changes,ice and snow melting and sea level changes,and(co)seismic gravity changes,as well as in promoting other disciplines.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41204017,41228004,and 41274025)the Shanghai Postdoctoral Sustentation Fund (No. 13R21417900)
文摘The Gravity Recovery and Climate Experiment(GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since2002. As large earthquakes cause significant mass changes on and under the Earth's surface,GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission,GRACE has successfully detected seismic gravitational changes of several giant earthquakes,which include the 2004 Sumatra–Andaman earthquake,2010 Maule(Chile) earthquake,and 2011 Tohoku-Oki(Japan) earthquake. In this review,we describe by examples how to process GRACE timevariable gravity data to retrieve seismic signals,and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application.
基金funded by National Natural Science Foundation of China(Grant No.11803065)Natural Science Foundation of Shanghai(Grant No.22ZR1472800)。
文摘Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the least squares method,which models seasonal deformation as a constant seasonal amplitude and phase.However,the seasonal variations are not constant from year to year,and the seasonal amplitude and phase are time-variable.In order to obtain the time-variable seasonal signal in the GPS station coordinate time series,singular spectrum analysis(SSA)is conducted in this study.We firstly applied the SSA on simulated seasonal signals with different frequencies 1.00 cycle per year(cpy),1.04 cpy and with time-variable amplitude are superimposed.It was found that SSA can successfully obtain the seasonal variations with different frequencies and with time-variable amplitude superimposed.Then,SSA is carried out on the GPS observations in Yunnan Province.The results show that the time-variable amplitude seasonal signals are ubiquitous in Yunnan Province,and the timevariable amplitude change in 2019 in the region is extracted,which is further explained by the soil moisture mass loading and atmospheric pressure loading.After removing the two loading effects,the SSA obtained modulated seasonal signals which contain the obvious seasonal variations at frequency of 1.046 cpy,it is close with the GPS draconitic year,1.040 cpy.Hence,the time-variable amplitude changes in 2019 and the seasonal GPS draconitic year in the region could be discriminated successfully by SSA in Yunnan Province.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
基金supported by Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT16),China.
文摘The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.
基金Supported by the National Natural Science Foundation of China(12261050)Science and Technology Project of Department of Education of Jiangxi Province(GJJ2201612 and GJJ211027)Natural Science Foundation of Jiangxi Province of China(20212BAB202021)。
文摘In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave solutions for this model under the influence of advection term and distributed delay.The obtained results indicate that weak kernel and strong kernel can both deduce the existence of periodic traveling wave solutions.Finally,we apply the main results in this paper to Logistic model and Nicholson’s blowflies model.
文摘A Langevin delayed fractional system with multiple delays in control,is a delayed fractional system that includes delay parameters in both state and control,is first introduced.This paper is devoted to investigating the relative controllability of the Langevin delayed fractional system with multiple delays in control.For linear systems to be relatively controllable,necessary and sufficient circumstances are identified by introducing and employing the Gramian matrix.The sufficient conditions for the relative controllability of semilinear systems are ofered based on Schauder's fixed point theorem.As an unusual approach,the controllability results of the delayed system are built for the first time on the exact solution produced by the MittagLeffler type function although controllability ones in the literature are built on the Volterra integral equations or the mild solutions produced by resolvent families.
基金supported by the Natural Science Foundation of Sichuan Province,China(Youth Science Foundation)(Grant No.2022NSFSC1952).
文摘The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.
基金supported by the Natural Science Foundation of Hunan Province(2021JJ31089)the Scientific Research Project of Health Commission of Hunan Province(202203104548),China。
文摘Objective:The neurotoxicity of carbon monoxide(CO)to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning(DEACMP).Our previous study found that retinoic acid(RA)can suppress the neurotoxic effects of CO.This study further explores,in vivo and in vitro,the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.Methods:A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO,and a DEACMP animal model was established in adult Kunming mice.Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay and Annexin V/propidium iodide(PI)double staining.The transcriptional and protein expression of each gene was detected using real time fluorescence quantitative PCR(RT-qPCR)and Western blotting.Long noncoding RNA(lncRNA)SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes.In DEACMP mice,SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.Results:RA at 10 and 20μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes,downregulation of SNHG15 and LINGO-1,and upregulation of brain-derived neurotrophic factor(BDNF)and tyrosine kinase receptor B(TrkB)(all P<0.05).Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity(all P<0.05).Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels(all P<0.05).Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP(all P<0.05).Conclusion:RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes,thereby reducing central nervous system injury and exerting neuroprotective effects.LncRNA SNHG15 and LINGO-1 are key molecules mediating RA induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway.These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.
基金Research Project of Huzhou University under Grunt KYL21223。
文摘This paper deals with the problem of robust stabilization for uncertain Takagi-Sugeno(T-S)fuzzy neutral systems with input delays and distributed delays.The purpose is to design a state feedback fuzzy controller with a H∞performance such that the resulting closed-loop system is robustly stable.Sufficient conditions for the solvability of the problem are obtained by utilizing proper Lyapunov functional together with the linear matrix inequality(LMI)approach,especially two different improved results on robust H∞controller design with relaxed conditions are obtained.Finally,we provide two examples to verify the effectiveness of our design method and give some principle for choosing the proper controller under certain circumstances.
文摘To provide an energy-efficient and slab-demand-compliant rolling delay strategy,the simulation software is utilized to calculate the rolling delay process of the reheating furnace.Based on energy consumption evaluation,two optimization methods were employed.The bisection approach uses the needs of the slab to estimate the rolling delay temperature,and the golden section search method uses the energy consumption analysis of the slab to determine the high-temperature insulation duration.Generally,the slab closest to the discharge position in the control zone is selected as the optimization target.The optimized slab does not show a significant temperature rise after the end of the rolling delay process.When comparing the optimized rolling delay strategies with the traditional ones,the optimized rolling delay strategies not only meet the output requirements for slabs but also offer significant advantages in terms of energy efficiency,and this advantage increases with rolling delay time.
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,92480001,12134001,12304418,12274130,12274133,12474378,and 12404378)the National Key R&D Program of China(Grant Nos.2022YFA1404600 and 2022YFA1205100)+2 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005)。
文摘We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.
基金Supported by the National Natural Science Foundation of China(11971378)Shaanxi Fundamental Science Research Project for Mathematics and Physics(23JSY050)Shaanxi Innovative Training Program for College Students(S202410719114)。
文摘In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attractor in C_(Hg) is equal to the global attractor in C_(Vg).
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,12404378,92480001,12134001,12174113,12174107,12474325,12404379,and 12474378)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Fundamental Research Funds for the Central Universities,the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005).
文摘We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with dual tunable couplers,where each coupler comprises two 2×2 multimode interferometers and a MZI phase-tuning section.Experimental results demonstrate continuous delay tuning from 0 to 293 ps through synchronized control of coupling coefficients,corresponding to a 4 cm path difference between interferometer arms.The measured delay range exhibits excellent agreement with theoretical predictions derived from ODL waveguide parameters.This result addresses critical challenges in integrated photonic systems that require precise temporal control,particularly for applications in optical communications and quantum information processing,where a wide tuning range is paramount.