In a real climate system there are multiple time-space scale atmosphere-ocean interactions, ranging from the planetary scale and basin scale to local air-sea interactions. The Zebiak-Cane (ZC) model with one-level atm...In a real climate system there are multiple time-space scale atmosphere-ocean interactions, ranging from the planetary scale and basin scale to local air-sea interactions. The Zebiak-Cane (ZC) model with one-level atmosphere described only local air-sea interaction process. Thus the planetary scale Hadley cell and Walker cell anomalies should be introduced in the model. Including the planetary scale Hadley cell anomaly in the model improved the prediction skill. It showed that the improved model provided satisfactory prediction of the equatorial eastern Pacific SST anomaly with lead time of 9-10 months not only for 1970-1991 but also for 1992-1995.展开更多
Indian Railways have been the largest people moving transport infrastructure in India.Over the years the systems and trains have been upgraded resulting in both better passenger amenities and reduction in travel time....Indian Railways have been the largest people moving transport infrastructure in India.Over the years the systems and trains have been upgraded resulting in both better passenger amenities and reduction in travel time.The newest addition is the Vande Bharat Express,a semi-high-speed train that was introduced in India in 2019.The train currently runs between 10 routes and has brought significant changes to India’s railway network.This article explores the introduction of Vande Bharat Express trains in India and its effects on the country’s interstation time-space shrinkage using cartographic techniques.The cartographic techniques like stepwise multidimensional scaling and interpolation using the distance cartogram plugin in QGIS are mainly used for generating the time-space maps for various speeds.The limitations of these techniques and the methods to overcome those limitations are also explored in this article.展开更多
This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward...This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward spreading speeds for the infective individuals, which can be used to estimate how fast the disease spreads. To overcome the difficulty arising from the lack of comparison principle for such time-space periodic nonmonotone systems, our proof is mainly based on constructing a series of scalar time-space periodic equations, establishing the spreading speeds for such auxiliary equations and using comparison methods. It may be the first work to study the spreading speed for time-space periodic non-monotone systems.展开更多
Seismic anisotropy has been extensively acknowledged as a crucial element that influences the wave propagation characteristic during wavefield simulation,inversion and imaging.Transversely isotropy(TI)and orthorhombic...Seismic anisotropy has been extensively acknowledged as a crucial element that influences the wave propagation characteristic during wavefield simulation,inversion and imaging.Transversely isotropy(TI)and orthorhombic anisotropy(OA)are two typical categories of anisotropic media in exploration geophysics.In comparison of the elastic wave equations in both TI and OA media,pseudo-acoustic wave equations(PWEs)based on the acoustic assumption can markedly reduce computational cost and complexity.However,the presently available PWEs may experience SV-wave contamination and instability when anisotropic parameters cannot satisfy the approximated condition.Exploiting pure-mode wave equations can effectively resolve the above-mentioned issues and generate pure P-wave events without any artifacts.To further improve the computational accuracy and efficiency,we develop two novel pure qP-wave equations(PPEs)and illustrate the corresponding numerical solutions in the timespace domain for 3D tilted TI(TTI)and tilted OA(TOA)media.First,the rational polynomials are adopted to estimate the exact pure qP-wave dispersion relations,which contain complicated pseudo-differential operators with irrational forms.The polynomial coefficients are produced by applying a linear optimization algorithm to minimize the objective function difference between the expansion formula and the exact one.Then,the developed optimized PPEs are efficiently implemented using the finite-difference(FD)method in the time-space domain by introducing a scalar operator,which can help avoid the problem of spectral-based algorithms and other calculation burdens.Structures of the new equations are concise and corresponding implementation processes are straightforward.Phase velocity analyses indicate that our proposed optimized equations can lead to reliable approximation results.3D synthetic examples demonstrate that our proposed FD-based PPEs can produce accurate and stable P-wave responses,and effectively describe the wavefield features in complicated TTI and TOA media.展开更多
The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in...The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in cycle mode. Displacement measuring by magnification is achieved with period measurement by magnification. To change the condition that traditional precision measurement depends on machining precision greatly, the concept of measuring space with time and theory of time-space coordinate transformation are proposed. Guided by the idea of measuring space with time, differential frequency measurement system and time grating displacement sensor are developed based on the proposed novel methods. And high-precision measurement is achieved without high-precision manufacture, which embeds the remarkable characteristics of low cost but high precision to the devices. Experiment and test results conform the validity of the proposed time-space concept.展开更多
Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with m...Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.展开更多
Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom deg...Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.展开更多
We present one family of general analytical solutions for the generalized nonlinear Schr?dinger equation with time-space modulation via the method of a combination of the Darboux transformation and similarity transfor...We present one family of general analytical solutions for the generalized nonlinear Schr?dinger equation with time-space modulation via the method of a combination of the Darboux transformation and similarity transformation. Nonlinear waves on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations are obtained. In particular, we demonstrate the existence and property of localized modes on a doubleperiodic background under a special designed optical lattice potential. Our results may raise the possibility of related experiments and potential applications in nonlinear optics and Bose–Einstein condensates.展开更多
In this paper we discuss a parallel sorting algorithm on a hypercube. Its time complexity is O(n logn/p) +O(n). Here, P is the number of processors available and n, the amount of items to be sorted. Take the problem o...In this paper we discuss a parallel sorting algorithm on a hypercube. Its time complexity is O(n logn/p) +O(n). Here, P is the number of processors available and n, the amount of items to be sorted. Take the problem of time-space optimization into consideration, when P≤ O(log n), this algorithm is both timespace optimal and cost optimization. But this means only speedup is O(P) and it is not linear speedup. Therefore, we further discuss relevant parallel efficiency problems.展开更多
Following the fractional cable equation established in the letter [B.I. Henry, T.A.M. Langlands, and S.L.Wearne, Phys. Rev. Lett. 100(2008) 128103], we present the time-space fractional cable equation which describes ...Following the fractional cable equation established in the letter [B.I. Henry, T.A.M. Langlands, and S.L.Wearne, Phys. Rev. Lett. 100(2008) 128103], we present the time-space fractional cable equation which describes the anomalous transport of electrodiffusion in nerve cells. The derivation is based on the generalized fractional Ohm's law;and the temporal memory effects and spatial-nonlocality are involved in the time-space fractional model. With the help of integral transform method we derive the analytical solutions expressed by the Green's function; the corresponding fractional moments are calculated; and their asymptotic behaviors are discussed. In addition, the explicit solutions of the considered model with two different external current injections are also presented.展开更多
Artificially ground freezing (AGF) is one of the main methods to establish temporary support for shaft sinking in unstable water bearing strata. Domde (1915) formula based on frozen soil strength has widely been used ...Artificially ground freezing (AGF) is one of the main methods to establish temporary support for shaft sinking in unstable water bearing strata. Domde (1915) formula based on frozen soil strength has widely been used for designing freezing wall thickness. However, it can not ensure the stability of freezing wall, nor guarantee the safety of shaft construction as frozen depth increases in unstable water bearing strata. F A. Auld (1985, 1988)[1,2] presented a design method of freezing wall, which is on the basis of strength and stability, together with deformation of freezing wall. This paper, according to the practice in China, describes a "time -space" related design method for deep freezing wall. The method is based on "time-space" concept, which includes influence of excavation rate of advance, unsupported length of freezing wall and the sump state on inward deformation of freezing wall, and the allowable pipe deformation caused by inward deformation of freezing wall. Finally, successful application of this method to the large scale coal mine-Jining No. 2 Mine[3] in Shandong Province of China is presented. It saved much investment compared with F. A. Auld’s design for the same mine.展开更多
This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based o...This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.展开更多
In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The...In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian.The schemes are proved to be unconditionally stable and convergent.The numerical results are in line with the theoretical analysis.展开更多
Environmental problems have received a great deal of attention in recent years.In particular,CO2 emissions worsen global warming and other environmental problems.The transport sector accounts for 20% of the total CO2 ...Environmental problems have received a great deal of attention in recent years.In particular,CO2 emissions worsen global warming and other environmental problems.The transport sector accounts for 20% of the total CO2 emissions.Therefore,the CO2 emission reduction of the transport sector is of great importance.In order to reduce emissions effectively,it is necessary to change the distribution and transportation processes.The purpose of this study is to minimize both the transportation costs and CO2 emissions during transportation.Our model considers a transportation scheduling problem in which loads are transported from an overseas production base to three domestic demand centers.The need for time-space networks arises naturally to improve the model.It is possible to know the distance carriers are moving,and also consider the timetables of carriers during transportation.Carrier choice,less-than carrier load,and domestic transportation among demand centers are considered as the three target areas to reduce CO2 emissions during the distribution process.The research model was formulated as a mixed integer programming (MIP) problem.It achieves cost reduction,and will contribute to improvement of the natural environment.展开更多
This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of ...This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.展开更多
In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order f...In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).展开更多
The study shows that earthquake-affected time-space domain (ETSD), i.e. a time-space range in which strong earthquakes are unable to occur owing to the influence of a prior earthquake occurring, shows a hyperbolic mar...The study shows that earthquake-affected time-space domain (ETSD), i.e. a time-space range in which strong earthquakes are unable to occur owing to the influence of a prior earthquake occurring, shows a hyperbolic margin curve in the t(time)-r(distance) coordinate plane, which has a maximum affected radius r 0 at t=0 and a maximum influence time t 0 (i.e. the in-situ recurrence interval of earthquakes) at r=0. Based on the time-distance distributions of posterior earthquakes relative to prior ones in the regions of North China, Northwest China, Qinghai-Xizang (Tibet) plateau and Southwest China, the optimized and 90%-confidence margin curves are estimated using optimization and statistical analysis methods. This indicates that the concept and method of ETSD with 3-dimension (time-distance-magnitudes) instead of those of “recurrence interval" with 1-dimension (time) or 2-dimension (time-magnitude) provides a new approach to understanding the fluctuation of seismic activities, estimating the effective earthquake-preparation time of potential hypocenters, and therefore improving the medium- and long-term prediction of strong earthquakes.展开更多
By using the SLC(Single-Link Cluster)method,this study worked in three respects:(a)set up three-dimensional(3-D)SLC software that can deal with a large catalogue of earthquakes and analyze the characteristics of earth...By using the SLC(Single-Link Cluster)method,this study worked in three respects:(a)set up three-dimensional(3-D)SLC software that can deal with a large catalogue of earthquakes and analyze the characteristics of earthquakes’ clustering and scattering in time-space:(b)defined several parameters to describe the distinguishing feature for the SLC frame and developed a technique to calculate the 3-D SLC frames and these parameters with gradual time-sliding,and inspected their variations with time,especially before large events; and(c)by using these means,treated the earthquake catalogue in the top area of the Kunlun-Altun-Arc as well as some valuable results that had been obtained.展开更多
Mason Reset(MR),a groundbreaking invention by Clesson E.Mason in 1930 that later became a part of“the universal approach to process control instrumentation”,is revisited in this paper and is shown to consists of thr...Mason Reset(MR),a groundbreaking invention by Clesson E.Mason in 1930 that later became a part of“the universal approach to process control instrumentation”,is revisited in this paper and is shown to consists of three actions:fast(errorcorrection),medium(negative feedback for expanded proportional band)and slow(reset for zero steady-state error).The focus of the paper is on the reset action,generated from a positive feedback loop,and its underlying principles with profound implications to our understanding and practice of automatic control,both basic and advanced.For example,we note that reset control and integral control,contrary to common belief,differ fundamentally in design principle and in practicality.Such difference comes to a head in the event of integrator windup:while reset windup is a problem of actuator saturation,the integrator windup is a runaway situation due to controller instability.In fact,there is no advantage gained in replacing MR with an integrator.In other words,one should not integrate the error directly as in standard PID,since doing so makes the closed-loop system internally unstable.With MR-based control formulated in this paper,there is no such threat of instability and,therefore,no need for any anti-windup mechanisms.Furthermore,the integral control is made scalable in this framework as a tradeoff between the steady-state accuracy and the controller stability.This leads to a novel MR-based control design,scalable in gain and in time to accommodate various process characteristics and design specifications.Simple in construction and transparent in principle,this MR-based control,as a basic framework of design,is readily deployable in scale.展开更多
基金Project supported by the National 95 Scienct & Technology and the National Natural Science Foundation of China
文摘In a real climate system there are multiple time-space scale atmosphere-ocean interactions, ranging from the planetary scale and basin scale to local air-sea interactions. The Zebiak-Cane (ZC) model with one-level atmosphere described only local air-sea interaction process. Thus the planetary scale Hadley cell and Walker cell anomalies should be introduced in the model. Including the planetary scale Hadley cell anomaly in the model improved the prediction skill. It showed that the improved model provided satisfactory prediction of the equatorial eastern Pacific SST anomaly with lead time of 9-10 months not only for 1970-1991 but also for 1992-1995.
文摘Indian Railways have been the largest people moving transport infrastructure in India.Over the years the systems and trains have been upgraded resulting in both better passenger amenities and reduction in travel time.The newest addition is the Vande Bharat Express,a semi-high-speed train that was introduced in India in 2019.The train currently runs between 10 routes and has brought significant changes to India’s railway network.This article explores the introduction of Vande Bharat Express trains in India and its effects on the country’s interstation time-space shrinkage using cartographic techniques.The cartographic techniques like stepwise multidimensional scaling and interpolation using the distance cartogram plugin in QGIS are mainly used for generating the time-space maps for various speeds.The limitations of these techniques and the methods to overcome those limitations are also explored in this article.
基金supported by the Natural Science Basic Research Program of Shanxi(Grant No.2024JC-YBMS-025)the Innovation Capability Support Program of Shanxi(Grant No.2024RS-CXTD-88)。
文摘This paper is devoted to investigating the spreading speed of a time-space periodic epidemic model with vital dynamics and standard incidence in discrete media. We establish the existence of the leftward and rightward spreading speeds for the infective individuals, which can be used to estimate how fast the disease spreads. To overcome the difficulty arising from the lack of comparison principle for such time-space periodic nonmonotone systems, our proof is mainly based on constructing a series of scalar time-space periodic equations, establishing the spreading speeds for such auxiliary equations and using comparison methods. It may be the first work to study the spreading speed for time-space periodic non-monotone systems.
基金supported by the National Key R&D Program of China(2021YFA0716902)National Natural Science Foundation of China(NSFC)under contract number 42374149 and 42004119National Science and Technology Major Project(2024ZD1002907)。
文摘Seismic anisotropy has been extensively acknowledged as a crucial element that influences the wave propagation characteristic during wavefield simulation,inversion and imaging.Transversely isotropy(TI)and orthorhombic anisotropy(OA)are two typical categories of anisotropic media in exploration geophysics.In comparison of the elastic wave equations in both TI and OA media,pseudo-acoustic wave equations(PWEs)based on the acoustic assumption can markedly reduce computational cost and complexity.However,the presently available PWEs may experience SV-wave contamination and instability when anisotropic parameters cannot satisfy the approximated condition.Exploiting pure-mode wave equations can effectively resolve the above-mentioned issues and generate pure P-wave events without any artifacts.To further improve the computational accuracy and efficiency,we develop two novel pure qP-wave equations(PPEs)and illustrate the corresponding numerical solutions in the timespace domain for 3D tilted TI(TTI)and tilted OA(TOA)media.First,the rational polynomials are adopted to estimate the exact pure qP-wave dispersion relations,which contain complicated pseudo-differential operators with irrational forms.The polynomial coefficients are produced by applying a linear optimization algorithm to minimize the objective function difference between the expansion formula and the exact one.Then,the developed optimized PPEs are efficiently implemented using the finite-difference(FD)method in the time-space domain by introducing a scalar operator,which can help avoid the problem of spectral-based algorithms and other calculation burdens.Structures of the new equations are concise and corresponding implementation processes are straightforward.Phase velocity analyses indicate that our proposed optimized equations can lead to reliable approximation results.3D synthetic examples demonstrate that our proposed FD-based PPEs can produce accurate and stable P-wave responses,and effectively describe the wavefield features in complicated TTI and TOA media.
基金National Natural Science Foundation of China(No.59575095,No.59675089,No.50075091,No.50575235)
文摘The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in cycle mode. Displacement measuring by magnification is achieved with period measurement by magnification. To change the condition that traditional precision measurement depends on machining precision greatly, the concept of measuring space with time and theory of time-space coordinate transformation are proposed. Guided by the idea of measuring space with time, differential frequency measurement system and time grating displacement sensor are developed based on the proposed novel methods. And high-precision measurement is achieved without high-precision manufacture, which embeds the remarkable characteristics of low cost but high precision to the devices. Experiment and test results conform the validity of the proposed time-space concept.
基金supported by the National Natural Science Foundation of China(61671137)。
文摘Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.
基金supported by the National Natural Science Fundation of China (61671137)。
文摘Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11475135 and 11547302
文摘We present one family of general analytical solutions for the generalized nonlinear Schr?dinger equation with time-space modulation via the method of a combination of the Darboux transformation and similarity transformation. Nonlinear waves on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations are obtained. In particular, we demonstrate the existence and property of localized modes on a doubleperiodic background under a special designed optical lattice potential. Our results may raise the possibility of related experiments and potential applications in nonlinear optics and Bose–Einstein condensates.
文摘In this paper we discuss a parallel sorting algorithm on a hypercube. Its time complexity is O(n logn/p) +O(n). Here, P is the number of processors available and n, the amount of items to be sorted. Take the problem of time-space optimization into consideration, when P≤ O(log n), this algorithm is both timespace optimal and cost optimization. But this means only speedup is O(P) and it is not linear speedup. Therefore, we further discuss relevant parallel efficiency problems.
基金Supported by the Program for New Century Excellent Talents in University under Grant No.NCET-09-0438the National Natural Science Foundation of China under Grant No.11271173+2 种基金the training Program of the Major Research Plan of the National Natural Science Foundation of China under Grant No.91120014the Starting Research Foundation from the Xi’an University of Technology under GrantNo.108-211206the Scientific Research Foundation of the Education Department of Shaanxi Province under Grant No.2013JK0581
文摘Following the fractional cable equation established in the letter [B.I. Henry, T.A.M. Langlands, and S.L.Wearne, Phys. Rev. Lett. 100(2008) 128103], we present the time-space fractional cable equation which describes the anomalous transport of electrodiffusion in nerve cells. The derivation is based on the generalized fractional Ohm's law;and the temporal memory effects and spatial-nonlocality are involved in the time-space fractional model. With the help of integral transform method we derive the analytical solutions expressed by the Green's function; the corresponding fractional moments are calculated; and their asymptotic behaviors are discussed. In addition, the explicit solutions of the considered model with two different external current injections are also presented.
文摘Artificially ground freezing (AGF) is one of the main methods to establish temporary support for shaft sinking in unstable water bearing strata. Domde (1915) formula based on frozen soil strength has widely been used for designing freezing wall thickness. However, it can not ensure the stability of freezing wall, nor guarantee the safety of shaft construction as frozen depth increases in unstable water bearing strata. F A. Auld (1985, 1988)[1,2] presented a design method of freezing wall, which is on the basis of strength and stability, together with deformation of freezing wall. This paper, according to the practice in China, describes a "time -space" related design method for deep freezing wall. The method is based on "time-space" concept, which includes influence of excavation rate of advance, unsupported length of freezing wall and the sump state on inward deformation of freezing wall, and the allowable pipe deformation caused by inward deformation of freezing wall. Finally, successful application of this method to the large scale coal mine-Jining No. 2 Mine[3] in Shandong Province of China is presented. It saved much investment compared with F. A. Auld’s design for the same mine.
基金Supported by the High Technology Research and Development Programme of China (No. 2008AA01A328)the National Natural Science Foundation of China (No. 60772022)+2 种基金the Program for New Century Excellent Talents in University (No. NCET-05-0112)the Program for Changjiang Scholars and Innovative Research Team in University of MOE, China (No. IRT0609)111 Project (No. B07005)
文摘This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.
基金the National Natural Science Foundation of China under Grant Nos.12271339 and 12201391.
文摘In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian.The schemes are proved to be unconditionally stable and convergent.The numerical results are in line with the theoretical analysis.
文摘Environmental problems have received a great deal of attention in recent years.In particular,CO2 emissions worsen global warming and other environmental problems.The transport sector accounts for 20% of the total CO2 emissions.Therefore,the CO2 emission reduction of the transport sector is of great importance.In order to reduce emissions effectively,it is necessary to change the distribution and transportation processes.The purpose of this study is to minimize both the transportation costs and CO2 emissions during transportation.Our model considers a transportation scheduling problem in which loads are transported from an overseas production base to three domestic demand centers.The need for time-space networks arises naturally to improve the model.It is possible to know the distance carriers are moving,and also consider the timetables of carriers during transportation.Carrier choice,less-than carrier load,and domestic transportation among demand centers are considered as the three target areas to reduce CO2 emissions during the distribution process.The research model was formulated as a mixed integer programming (MIP) problem.It achieves cost reduction,and will contribute to improvement of the natural environment.
基金supported by the National Natural Science Foundation of China(Grant No.62102032)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202211417010).
文摘This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.
文摘In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).
文摘The study shows that earthquake-affected time-space domain (ETSD), i.e. a time-space range in which strong earthquakes are unable to occur owing to the influence of a prior earthquake occurring, shows a hyperbolic margin curve in the t(time)-r(distance) coordinate plane, which has a maximum affected radius r 0 at t=0 and a maximum influence time t 0 (i.e. the in-situ recurrence interval of earthquakes) at r=0. Based on the time-distance distributions of posterior earthquakes relative to prior ones in the regions of North China, Northwest China, Qinghai-Xizang (Tibet) plateau and Southwest China, the optimized and 90%-confidence margin curves are estimated using optimization and statistical analysis methods. This indicates that the concept and method of ETSD with 3-dimension (time-distance-magnitudes) instead of those of “recurrence interval" with 1-dimension (time) or 2-dimension (time-magnitude) provides a new approach to understanding the fluctuation of seismic activities, estimating the effective earthquake-preparation time of potential hypocenters, and therefore improving the medium- and long-term prediction of strong earthquakes.
基金This project was sponsored by the United Earthquake Science Foundation (93068), China
文摘By using the SLC(Single-Link Cluster)method,this study worked in three respects:(a)set up three-dimensional(3-D)SLC software that can deal with a large catalogue of earthquakes and analyze the characteristics of earthquakes’ clustering and scattering in time-space:(b)defined several parameters to describe the distinguishing feature for the SLC frame and developed a technique to calculate the 3-D SLC frames and these parameters with gradual time-sliding,and inspected their variations with time,especially before large events; and(c)by using these means,treated the earthquake catalogue in the top area of the Kunlun-Altun-Arc as well as some valuable results that had been obtained.
文摘Mason Reset(MR),a groundbreaking invention by Clesson E.Mason in 1930 that later became a part of“the universal approach to process control instrumentation”,is revisited in this paper and is shown to consists of three actions:fast(errorcorrection),medium(negative feedback for expanded proportional band)and slow(reset for zero steady-state error).The focus of the paper is on the reset action,generated from a positive feedback loop,and its underlying principles with profound implications to our understanding and practice of automatic control,both basic and advanced.For example,we note that reset control and integral control,contrary to common belief,differ fundamentally in design principle and in practicality.Such difference comes to a head in the event of integrator windup:while reset windup is a problem of actuator saturation,the integrator windup is a runaway situation due to controller instability.In fact,there is no advantage gained in replacing MR with an integrator.In other words,one should not integrate the error directly as in standard PID,since doing so makes the closed-loop system internally unstable.With MR-based control formulated in this paper,there is no such threat of instability and,therefore,no need for any anti-windup mechanisms.Furthermore,the integral control is made scalable in this framework as a tradeoff between the steady-state accuracy and the controller stability.This leads to a novel MR-based control design,scalable in gain and in time to accommodate various process characteristics and design specifications.Simple in construction and transparent in principle,this MR-based control,as a basic framework of design,is readily deployable in scale.