Flotation is the most common method to recover valuable minerals by selective adsorption of collectors on target mineral surfaces.However,in subsequent hydrometallurgy of mineral flotation concentrates,the adsorbed co...Flotation is the most common method to recover valuable minerals by selective adsorption of collectors on target mineral surfaces.However,in subsequent hydrometallurgy of mineral flotation concentrates,the adsorbed collectors must be desorbed since it can adversely affect the efficiency of metallurgical process and produce wastewater.ZL,as a fatty acid mixture,is a typical industrially used collector for scheelite flotation in China.Sodium oleate(NaOL)has similar fatty acid group as ZL.In this study,the desorption behavior of NaOL/ZL from scheelite surface by a physical method of stirring at a low temperature was investigated.NaOL desorption tests of single mineral showed that a desorption rate of 77.75% for NaOL from scheelite surface into pulp was achieved in a stirring speed of2500 r/min at 5℃in a neutral environment.Under the above desorption condition,in the pulp containing desorbed collector by adding extra 30% normal NaOL dosage,the scheelite recovery reached about 95% in the single mineral flotation test.Desorption and reuse of ZL collector for the flotation of real scheelite ore showed only a 75%normal dosage of ZL could produce a qualified rough concentrate.The atomic force microscope(AFM)tests showed that after desorption treatment of low temperature and strong stirring,the dense strip-like structure of NaOL on the scheelite surface was destroyed to be speck-like.Molecular dynamics simulations(MDS)demonstrated that the adsorption energy between NaOL and scheelite surface was more negative at 25℃(-13.39 kcal/mol)than at 5℃(-11.50 kcal/mol)in a neutral pH,indicating that a low temperature was beneficial for the desorption of collector from mineral surface.Due to its simplicity and economy,the method we proposed of desorption of collector from mineral surface and its reuse for flotation has a great potential for industrial application.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsor...Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.展开更多
Exploring the vast extraterrestrial space is an inevitable trend with continuous human development.Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use...Exploring the vast extraterrestrial space is an inevitable trend with continuous human development.Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future.Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched.Herein,we briefly review the related wastewater characteristics and the history of water treatment in space stations,and we focus on future challenges and perspectives,aiming at providing insights for optimizing wastewater treatment technologies and closing the water cycle in future.展开更多
In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various alga...In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various algae harvesting techniques,membrane-based filtration has shown numerous advantages.This study evaluated the reuse of permeate streams derived from Scenedesmus obliquus(S.obliquus)biomass filtration under bench-scale and pilot-scale conditions.In particular,this study identified a series of challenges and mechanisms that influence the water reuse potential and the robustness of the membrane harvesting system.In a preliminary phase of this investigation,the health status of the initial biomass was found to have important implications for the harvesting performance and quality of the permeate stream to be reused;healthy biomass ensured better dewatering performance(i.e.,higher water fluxes)and higher quality of the permeate water streams.A series of bench-scale filtration experiments with different combinations of cross-flow velocity and pressure values were performed to identify the operative conditions that would maximize water productivity.The selected conditions,2.4 m·s^(-1)and 1.4 bar(1 bar=105 Pa),respectively,were then applied to drive pilot-scale microfiltration tests to reuse the collected permeate as a new cultivation medium for S.obliquus growth in a pilot-scale photobioreactor.The investigation revealed key differences between the behavior of the membrane systems at the two scales(bench and pilot).It indicated the potential for beneficial reuse of the permeate stream as the pilot-scale experiments ensured high harvesting performance and growth rates of biomass in permeate water that were highly similar to those recorded in the ideal cultivation medium.Finally,different nutrient reintegration protocols were investigated,revealing that both macro-and micro-nutrient levels are critical for the success of the reuse approach.展开更多
A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resou...A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resource Recovery Facility (WRRF) effluent to waters that supply drinking water treatment plants has been documented by some communities. In the United States (US), among the top 25 most impacted drinking water treatment plants by upstream WRRF, 16% of the influent flow to the drinking water treatment plant under average streamflow and up to 100% under low-flow conditions is WRRF effluent. Currently, the full extent of de facto reuse in the US may be much higher because of population growth. The scenario is no different for Beaufort-Jasper Water and Sewer Authority (BJWSA) in South Carolina, US, with contributions to the Savannah River originating from numerous WRRF and other upstream dischargers. South Carolina coastal utilities such as BJSWA are considering direct and indirect potable reuse options, driven by disposal limitations and challenges. Currently, South Carolina does not have a framework, guidelines, or regulations for reuse, but discussions have started among the regulated community. In addition to understanding the extent of de facto reuse, the state will need to develop standards and best practices to enable future adoption of planned potable reuse solutions to water resources challenges. Such guidance should address human health risk management and technical considerations regarding treatment in addition to other factors, including source control, storage, fail-safe operation, monitoring, non-cost factors, and public acceptance. This study conducted a mapping assessment specific to BJWSA, sampled at four locations on Savannah River, and observed that de facto reuse is approximately 4.6% to 5.9% during low-flow months and is within the range generally observed nationwide. When coupled with evidence that planned potable reuse can improve human health and environmental risks, this practice is a meaningful option in the water supply portfolio for many utilities.展开更多
With an emphasis on the religious component of reuse potentiality,this study investigates the crucial nexus between spatial development and the conservation model for religious practice with socio-communal dimensions....With an emphasis on the religious component of reuse potentiality,this study investigates the crucial nexus between spatial development and the conservation model for religious practice with socio-communal dimensions.Adaptive reuse is a critical tactic for global preservation and revitalization to elevate heritage sites in culturally significant locations but provides contemporary functions to them simultaneously.This study examines the various facets of adaptive reuse concerning the religious cultural heritage of suppressed minorities,stressing its insight and importance including the inherent cultural worth of ancient structures and difficulties through creative solutions to modify the temple with modern purposes.The research methodology approaches through an extensive analysis of the literature and case studies and ends with design interventions.It looks into the socioeconomic advantages of adaptive reuse in religious practice,such as the promotion of pilgrimage tourism,community revitalization,and sustainable development.The possible findings will emphasize the conversation on sustainable heritage management by combining theoretical frameworks with practical discoveries as an architectural project with certain concepts.展开更多
Although ray tracing produces high-fidelity, realistic images, it is considered computationally burdensome when implemented on a high rendering rate system. Perception-driven rendering techniques generate images with ...Although ray tracing produces high-fidelity, realistic images, it is considered computationally burdensome when implemented on a high rendering rate system. Perception-driven rendering techniques generate images with minimal noise and distortion that are generally acceptable to the human visual system, thereby reducing rendering costs. In this paper, we introduce a perception-entropy-driven temporal reusing method to accelerate real-time ray tracing. We first build a just noticeable difference(JND) model to represent the uncertainty of ray samples and image space masking effects. Then, we expand the shading gradient through gradient max-pooling and gradient filtering to enlarge the visual receipt field. Finally, we dynamically optimize reusable time segments to improve the accuracy of temporal reusing. Compared with Monte Carlo ray tracing, our algorithm enhances frames per second(fps) by 1.93× to 2.96× at 8 to 16 samples per pixel, significantly accelerating the Monte Carlo ray tracing process while maintaining visual quality.展开更多
The paper presents an innovative approach to studying the reuse of a decommissioned natural gas production platformfor the seasonal storage and extraction of a hydrogen-methane(H2-CH4)mixture froma depleted reservoir....The paper presents an innovative approach to studying the reuse of a decommissioned natural gas production platformfor the seasonal storage and extraction of a hydrogen-methane(H2-CH4)mixture froma depleted reservoir.The reuse plan involves removing outdated equipment from the platform’s decks while retaining essential components such as wellheads and separators.Exploiting a depleted reservoir for the injection of an H_(2)-CH_(4) mixture requires a thorough understanding of its specific characteristics.This paper focuses on the engineering approach adopted in the basic design phase for such a conversion,providing recommendations and HSE guidelines.Given the hazardous nature of substances like hydrogen in the gas mixture,the paper also examines potential risk scenarios,particularly those involving containment loss.A qualitative and quantitative assessment of these risks is conducted to evaluate their impact on the structure and equipment.The results of this assessment serve as a foundation for later studies on layout optimization and domino effect prevention.Additionally,some critical scenarios are simulated using an innovative approach known as the Source Box Accident Model(SBAM),which was proposed in previous works.SBAM leverages Computational Fluid Dynamics(CFD)but decouples the accidental phenomenon into a release phase and a dispersion phase.This method overcomes the challenges conventional CFD tools face in assessing congested plant configurations,providing more precise estimations of gas cloud behavior.The simulation results indicate that the released gas remains within the platform deck domain,and the flammable cloud is significantly smaller than what traditional,simplified tools predict.展开更多
The paper analyzes the definite place of industrial building in the history of urban development. Due to the development of urban economy and the transition of the traditional industrial structure, many historic citie...The paper analyzes the definite place of industrial building in the history of urban development. Due to the development of urban economy and the transition of the traditional industrial structure, many historic cities and towns both at home and abroad have witnessed a large scale "demolition" and abandonment of industrial buildings in urban renewal during last 30 years. Consequently, it has been leading to the discontinuity of urban cultural and historic context. The paper discusses and expounds the clas...展开更多
Due to the fact that the existing web service description methods cannot address the issue of service reuse of various levels of granularity, the concept of service component is introduced, which packages together web...Due to the fact that the existing web service description methods cannot address the issue of service reuse of various levels of granularity, the concept of service component is introduced, which packages together web services and choreography, and their operations and properties are presented in a consistent and uniform manner. Service components are published externally as normal web services and can thus be employed by webbased applications. In order to improve reusability and testability of service components, the concept of composition pattern is also proposed, which presents the relationships among service components. The relationships and relationship compositions have a rigorous semantic, so that composite components can be validated at the configuration stage. The composition patterns support to integrate service components of various levels of granularity. Experience indicates that the application assembly can effectively be conducted by understanding, selecting, and reusing components easily.展开更多
This paper presents a tool for managing, reusing and analysing C software code based on database techniques. The abstract information of entire software code is stored in a program database that is the conceptual sche...This paper presents a tool for managing, reusing and analysing C software code based on database techniques. The abstract information of entire software code is stored in a program database that is the conceptual scheme of the entire software, whereas the reuse component is a subscheme. Relational algebra can be conveniently used to manage, analyse and reuse C code. In the tool, we can manage, analyse and reuse any components in the program database and rapidly extract source code of any components or construct the program code of a new system. The rule system is introduced in reusing source code.展开更多
分析目前高中英语阅读教学存在功利化、模式僵化、碎片化、浅层化、资源利用不充分等典型问题。针对这些问题,构建REUSE模式,即Reviewing(复习)—Exploring(探索)—Unlocking(揭秘)—Sharing(分享)—Evaluating(评价)。以人教版高中《...分析目前高中英语阅读教学存在功利化、模式僵化、碎片化、浅层化、资源利用不充分等典型问题。针对这些问题,构建REUSE模式,即Reviewing(复习)—Exploring(探索)—Unlocking(揭秘)—Sharing(分享)—Evaluating(评价)。以人教版高中《英语》必修3 Unit 3 The million pound bank note为例,探究在高中英语阅读教学中运用REUSE模式的教学流程及应用注意事项。展开更多
A full-scale plant using anaerobic, anoxic and oxic processes (A1/A2/O), along with a pilot-scale membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai...A full-scale plant using anaerobic, anoxic and oxic processes (A1/A2/O), along with a pilot-scale membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai Baosteel Chemical Co. Ltd., was investigated to treat coking wastewater for industrial reuse over a period of one year. The removals reached 82.5% (COD), 89.6% (BOD), 99.8% (ammonium nitrogen), 99.9% (phenol), 44.6% (total cyanide (T-CN)), 99.7% (thiocyanide (SCN-)) and 8.9% (fluoride), during the A1/A2/O biological treatment stage, and all parameters were further reduced by over 96.0%, except for fluoride (86.4%), in the final discharge effluent from the currently operating plant. The pilot-scale MBR process reduced the turbidity to less than 0.65 NTU, and most of the toxic organic compounds were degraded or intercepted by the A1/A2/O followed MBR processes. In addition, parameters including COD, T-CN, total nitrogen, fluoride, chloride ion, hardness and conductivity were significantly reduced by the NF-RO system to a level suitable for industrial reuse, with a total water production ratio of 70.7%. However, the concentrates from the NF and RO units were highly polluted and should be disposed of properly or further treated before being discharged.展开更多
The increasing complexity and size of configuration knowledge bases requres the provisionof advanced methods supporting the development of the actual configuration process and design reuse.A new framework to find a fe...The increasing complexity and size of configuration knowledge bases requres the provisionof advanced methods supporting the development of the actual configuration process and design reuse.A new framework to find a feasible and practical product configuration method is presented in masscustomization. The basic idea of the appoach is to integrate case-based reasoning (CBR) with a con-straint satisfaction problem(CSP). The similarity measure between a crisp and range is also given,which is common in case retrieves. Based on the configuration model, a product platform and customerneeds, case adaptation is carried out with the repair-based algorithm. Lastly, the methodology in theelevator configuration design domain is tested.展开更多
The aim of this article was to study the effects of land use change and water reuse options on an urban water cycle. A water cycle analysis was performed on the Goonja drainage basin, located in metropolitan Seoul, us...The aim of this article was to study the effects of land use change and water reuse options on an urban water cycle. A water cycle analysis was performed on the Goonja drainage basin, located in metropolitan Seoul, using the Aquacycle model. The chronological effects of urbanization were first assessed for the land uses of the Goonja drainage basin from 1975 to 2005, where the ratio of impervious areas ranged from 43% to 84%. Progressive urbanization was identified as leading to a decrease in evapotranspiration (29%), an increase in surface runoff (41%) and a decrease in groundwater recharge (74%), indicating a serious distortion of the water cycle. From a subsequent analysis of the water reuse options, such as rainwater use and wastewater reuse, it is concluded that wastewater reuse seemed to have an advantage over rainwater use for providing a consistent water supply throughout the year for a country like Korea. where the rainy season is concentrated during the summer monsoon.展开更多
Two different kinds of black liquor from the papermaking industry were treated by acidification and reuse. The experimental parameters and conditions were discussed in detail. The experimental results indicated that t...Two different kinds of black liquor from the papermaking industry were treated by acidification and reuse. The experimental parameters and conditions were discussed in detail. The experimental results indicated that the treatment process mentioned in this article is an effective process for the treatment of black liquor from the papermaking industry. By the treatment, the solid materials in black liquor are transferred into two by products and the other components are reused or evaporated. Thus, no wastewater except some condensation water would be discharged in pulping process and the problem of pollution of black liquor would be effectively solved.展开更多
Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy...Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy consumption and fouling propensity for broad sustainable applications.In addition,different membranes face various challenges in their specific applications during long-term operations.In this short review,we will summarize the recent progresses in emerging membrane technologies and system integration to advance and sustain water reuse and desalination with discussion on their challenges and perspectives.展开更多
To deal with a bottom up process model for design reuses a specific extended house of quality(EHOQ)is proposed Two kinds of supported functions,basic supported functions and new supported functions,are defined.Two ...To deal with a bottom up process model for design reuses a specific extended house of quality(EHOQ)is proposed Two kinds of supported functions,basic supported functions and new supported functions,are defined.Two processes to determine two kinds of functions are presented A kind of EHOQ matrix for a company is given and its management steps are studied.展开更多
Configuration knowledge is a dynamic information set which is evolving and enriching on and on. Product model is the instantiation of configuration knowledge and the evolution of configuration knowledge is the essenti...Configuration knowledge is a dynamic information set which is evolving and enriching on and on. Product model is the instantiation of configuration knowledge and the evolution of configuration knowledge is the essential inherent reason which causes the models dynamic evolvement. In the traditional model evolvement process, the inheriting and reuse of configuration knowledge was always ignored. Aim at solving the above problem, the multistage rhombus evolution mode of configuration knowledge is discussed in this paper. The product model based on configuration knowledge is put forward in different levels to achieve the models dynamic evolvement and automatic upgrading. The evolving configuration knowledge drives the product model to evolve directly according to the rule of up-layer evolvement. Furthermore, a new configuration knowledge reuse and optimization technology is presented to inheriting and reuse the foregone configuration knowledge in the course of model evolvement. At last, the air separation equipment which is related with the project is taken as an example to illuminate that the presented model evolvement and configuration knowledge reuse technology are validity and practical.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52304314 and U23A20602)the Open Fund of the Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control,Ministry of Ecology and Environment+3 种基金China(No.HB202406)the Fundamental Research Funds for the Central Universities of Central South University,China(Nos.CX20240021 and 2024ZZTS0008)the Innovation and Entrepreneurship Funding Project for College Students of Central South UniversityChina(No.S202410533166)。
文摘Flotation is the most common method to recover valuable minerals by selective adsorption of collectors on target mineral surfaces.However,in subsequent hydrometallurgy of mineral flotation concentrates,the adsorbed collectors must be desorbed since it can adversely affect the efficiency of metallurgical process and produce wastewater.ZL,as a fatty acid mixture,is a typical industrially used collector for scheelite flotation in China.Sodium oleate(NaOL)has similar fatty acid group as ZL.In this study,the desorption behavior of NaOL/ZL from scheelite surface by a physical method of stirring at a low temperature was investigated.NaOL desorption tests of single mineral showed that a desorption rate of 77.75% for NaOL from scheelite surface into pulp was achieved in a stirring speed of2500 r/min at 5℃in a neutral environment.Under the above desorption condition,in the pulp containing desorbed collector by adding extra 30% normal NaOL dosage,the scheelite recovery reached about 95% in the single mineral flotation test.Desorption and reuse of ZL collector for the flotation of real scheelite ore showed only a 75%normal dosage of ZL could produce a qualified rough concentrate.The atomic force microscope(AFM)tests showed that after desorption treatment of low temperature and strong stirring,the dense strip-like structure of NaOL on the scheelite surface was destroyed to be speck-like.Molecular dynamics simulations(MDS)demonstrated that the adsorption energy between NaOL and scheelite surface was more negative at 25℃(-13.39 kcal/mol)than at 5℃(-11.50 kcal/mol)in a neutral pH,indicating that a low temperature was beneficial for the desorption of collector from mineral surface.Due to its simplicity and economy,the method we proposed of desorption of collector from mineral surface and its reuse for flotation has a great potential for industrial application.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.
基金financially supported by the National Natural Science Foundation of China(Nos.52304314 and U23A20602)the Leading Talents of S&T Innovation of Hunan Province,China(No.2021RC4002)+2 种基金the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2024-16)the Open Foundation of Key Laboratory of Green Separation and Enrichment of Strategic Metal Mineral Resources(No.2023-02)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0008).
文摘Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.
基金supported by the National Natural Science Foundation of China(Nos.52070183,and 52270081)the International Cooperation and Exchange of the National Natural Science Foundation of China(No.51820105011)the Program of the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
文摘Exploring the vast extraterrestrial space is an inevitable trend with continuous human development.Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future.Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched.Herein,we briefly review the related wastewater characteristics and the history of water treatment in space stations,and we focus on future challenges and perspectives,aiming at providing insights for optimizing wastewater treatment technologies and closing the water cycle in future.
基金supported by the Politecnico di Torino and the CleanWaterCenter@PoliTo(58_DIM20TIRALB,58_DIM22TIRALB,and 01_TRIN_CI_CWC).
文摘In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various algae harvesting techniques,membrane-based filtration has shown numerous advantages.This study evaluated the reuse of permeate streams derived from Scenedesmus obliquus(S.obliquus)biomass filtration under bench-scale and pilot-scale conditions.In particular,this study identified a series of challenges and mechanisms that influence the water reuse potential and the robustness of the membrane harvesting system.In a preliminary phase of this investigation,the health status of the initial biomass was found to have important implications for the harvesting performance and quality of the permeate stream to be reused;healthy biomass ensured better dewatering performance(i.e.,higher water fluxes)and higher quality of the permeate water streams.A series of bench-scale filtration experiments with different combinations of cross-flow velocity and pressure values were performed to identify the operative conditions that would maximize water productivity.The selected conditions,2.4 m·s^(-1)and 1.4 bar(1 bar=105 Pa),respectively,were then applied to drive pilot-scale microfiltration tests to reuse the collected permeate as a new cultivation medium for S.obliquus growth in a pilot-scale photobioreactor.The investigation revealed key differences between the behavior of the membrane systems at the two scales(bench and pilot).It indicated the potential for beneficial reuse of the permeate stream as the pilot-scale experiments ensured high harvesting performance and growth rates of biomass in permeate water that were highly similar to those recorded in the ideal cultivation medium.Finally,different nutrient reintegration protocols were investigated,revealing that both macro-and micro-nutrient levels are critical for the success of the reuse approach.
文摘A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resource Recovery Facility (WRRF) effluent to waters that supply drinking water treatment plants has been documented by some communities. In the United States (US), among the top 25 most impacted drinking water treatment plants by upstream WRRF, 16% of the influent flow to the drinking water treatment plant under average streamflow and up to 100% under low-flow conditions is WRRF effluent. Currently, the full extent of de facto reuse in the US may be much higher because of population growth. The scenario is no different for Beaufort-Jasper Water and Sewer Authority (BJWSA) in South Carolina, US, with contributions to the Savannah River originating from numerous WRRF and other upstream dischargers. South Carolina coastal utilities such as BJSWA are considering direct and indirect potable reuse options, driven by disposal limitations and challenges. Currently, South Carolina does not have a framework, guidelines, or regulations for reuse, but discussions have started among the regulated community. In addition to understanding the extent of de facto reuse, the state will need to develop standards and best practices to enable future adoption of planned potable reuse solutions to water resources challenges. Such guidance should address human health risk management and technical considerations regarding treatment in addition to other factors, including source control, storage, fail-safe operation, monitoring, non-cost factors, and public acceptance. This study conducted a mapping assessment specific to BJWSA, sampled at four locations on Savannah River, and observed that de facto reuse is approximately 4.6% to 5.9% during low-flow months and is within the range generally observed nationwide. When coupled with evidence that planned potable reuse can improve human health and environmental risks, this practice is a meaningful option in the water supply portfolio for many utilities.
文摘With an emphasis on the religious component of reuse potentiality,this study investigates the crucial nexus between spatial development and the conservation model for religious practice with socio-communal dimensions.Adaptive reuse is a critical tactic for global preservation and revitalization to elevate heritage sites in culturally significant locations but provides contemporary functions to them simultaneously.This study examines the various facets of adaptive reuse concerning the religious cultural heritage of suppressed minorities,stressing its insight and importance including the inherent cultural worth of ancient structures and difficulties through creative solutions to modify the temple with modern purposes.The research methodology approaches through an extensive analysis of the literature and case studies and ends with design interventions.It looks into the socioeconomic advantages of adaptive reuse in religious practice,such as the promotion of pilgrimage tourism,community revitalization,and sustainable development.The possible findings will emphasize the conversation on sustainable heritage management by combining theoretical frameworks with practical discoveries as an architectural project with certain concepts.
基金supported by the National Natural Science Foundation of China (No.U19A2063)the Jilin Provincial Science&Technology Development Program of China (No.20230201080GX)。
文摘Although ray tracing produces high-fidelity, realistic images, it is considered computationally burdensome when implemented on a high rendering rate system. Perception-driven rendering techniques generate images with minimal noise and distortion that are generally acceptable to the human visual system, thereby reducing rendering costs. In this paper, we introduce a perception-entropy-driven temporal reusing method to accelerate real-time ray tracing. We first build a just noticeable difference(JND) model to represent the uncertainty of ray samples and image space masking effects. Then, we expand the shading gradient through gradient max-pooling and gradient filtering to enlarge the visual receipt field. Finally, we dynamically optimize reusable time segments to improve the accuracy of temporal reusing. Compared with Monte Carlo ray tracing, our algorithm enhances frames per second(fps) by 1.93× to 2.96× at 8 to 16 samples per pixel, significantly accelerating the Monte Carlo ray tracing process while maintaining visual quality.
基金funded by the Italian Ministry of Environment and Energy Security(MASE)-Direzione Generale per le Fonti energetiche e Titoli Abilitativi(DGFTA).
文摘The paper presents an innovative approach to studying the reuse of a decommissioned natural gas production platformfor the seasonal storage and extraction of a hydrogen-methane(H2-CH4)mixture froma depleted reservoir.The reuse plan involves removing outdated equipment from the platform’s decks while retaining essential components such as wellheads and separators.Exploiting a depleted reservoir for the injection of an H_(2)-CH_(4) mixture requires a thorough understanding of its specific characteristics.This paper focuses on the engineering approach adopted in the basic design phase for such a conversion,providing recommendations and HSE guidelines.Given the hazardous nature of substances like hydrogen in the gas mixture,the paper also examines potential risk scenarios,particularly those involving containment loss.A qualitative and quantitative assessment of these risks is conducted to evaluate their impact on the structure and equipment.The results of this assessment serve as a foundation for later studies on layout optimization and domino effect prevention.Additionally,some critical scenarios are simulated using an innovative approach known as the Source Box Accident Model(SBAM),which was proposed in previous works.SBAM leverages Computational Fluid Dynamics(CFD)but decouples the accidental phenomenon into a release phase and a dispersion phase.This method overcomes the challenges conventional CFD tools face in assessing congested plant configurations,providing more precise estimations of gas cloud behavior.The simulation results indicate that the released gas remains within the platform deck domain,and the flammable cloud is significantly smaller than what traditional,simplified tools predict.
文摘The paper analyzes the definite place of industrial building in the history of urban development. Due to the development of urban economy and the transition of the traditional industrial structure, many historic cities and towns both at home and abroad have witnessed a large scale "demolition" and abandonment of industrial buildings in urban renewal during last 30 years. Consequently, it has been leading to the discontinuity of urban cultural and historic context. The paper discusses and expounds the clas...
基金The National Basic Research Program of China (973Program) (No.1999032710).
文摘Due to the fact that the existing web service description methods cannot address the issue of service reuse of various levels of granularity, the concept of service component is introduced, which packages together web services and choreography, and their operations and properties are presented in a consistent and uniform manner. Service components are published externally as normal web services and can thus be employed by webbased applications. In order to improve reusability and testability of service components, the concept of composition pattern is also proposed, which presents the relationships among service components. The relationships and relationship compositions have a rigorous semantic, so that composite components can be validated at the configuration stage. The composition patterns support to integrate service components of various levels of granularity. Experience indicates that the application assembly can effectively be conducted by understanding, selecting, and reusing components easily.
文摘This paper presents a tool for managing, reusing and analysing C software code based on database techniques. The abstract information of entire software code is stored in a program database that is the conceptual scheme of the entire software, whereas the reuse component is a subscheme. Relational algebra can be conveniently used to manage, analyse and reuse C code. In the tool, we can manage, analyse and reuse any components in the program database and rapidly extract source code of any components or construct the program code of a new system. The rule system is introduced in reusing source code.
文摘分析目前高中英语阅读教学存在功利化、模式僵化、碎片化、浅层化、资源利用不充分等典型问题。针对这些问题,构建REUSE模式,即Reviewing(复习)—Exploring(探索)—Unlocking(揭秘)—Sharing(分享)—Evaluating(评价)。以人教版高中《英语》必修3 Unit 3 The million pound bank note为例,探究在高中英语阅读教学中运用REUSE模式的教学流程及应用注意事项。
文摘A full-scale plant using anaerobic, anoxic and oxic processes (A1/A2/O), along with a pilot-scale membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai Baosteel Chemical Co. Ltd., was investigated to treat coking wastewater for industrial reuse over a period of one year. The removals reached 82.5% (COD), 89.6% (BOD), 99.8% (ammonium nitrogen), 99.9% (phenol), 44.6% (total cyanide (T-CN)), 99.7% (thiocyanide (SCN-)) and 8.9% (fluoride), during the A1/A2/O biological treatment stage, and all parameters were further reduced by over 96.0%, except for fluoride (86.4%), in the final discharge effluent from the currently operating plant. The pilot-scale MBR process reduced the turbidity to less than 0.65 NTU, and most of the toxic organic compounds were degraded or intercepted by the A1/A2/O followed MBR processes. In addition, parameters including COD, T-CN, total nitrogen, fluoride, chloride ion, hardness and conductivity were significantly reduced by the NF-RO system to a level suitable for industrial reuse, with a total water production ratio of 70.7%. However, the concentrates from the NF and RO units were highly polluted and should be disposed of properly or further treated before being discharged.
基金This project is supported by National Natural Science Foundation of China(No.50275133) and China Hi-tech Program CIMS Topic (No.2003-China(No.50275133) and China Hi-tech Program CIMS Topic (No.2003-AA411320). Received July 22, 2003
文摘The increasing complexity and size of configuration knowledge bases requres the provisionof advanced methods supporting the development of the actual configuration process and design reuse.A new framework to find a feasible and practical product configuration method is presented in masscustomization. The basic idea of the appoach is to integrate case-based reasoning (CBR) with a con-straint satisfaction problem(CSP). The similarity measure between a crisp and range is also given,which is common in case retrieves. Based on the configuration model, a product platform and customerneeds, case adaptation is carried out with the repair-based algorithm. Lastly, the methodology in theelevator configuration design domain is tested.
基金financially supported by a Korea University Grant
文摘The aim of this article was to study the effects of land use change and water reuse options on an urban water cycle. A water cycle analysis was performed on the Goonja drainage basin, located in metropolitan Seoul, using the Aquacycle model. The chronological effects of urbanization were first assessed for the land uses of the Goonja drainage basin from 1975 to 2005, where the ratio of impervious areas ranged from 43% to 84%. Progressive urbanization was identified as leading to a decrease in evapotranspiration (29%), an increase in surface runoff (41%) and a decrease in groundwater recharge (74%), indicating a serious distortion of the water cycle. From a subsequent analysis of the water reuse options, such as rainwater use and wastewater reuse, it is concluded that wastewater reuse seemed to have an advantage over rainwater use for providing a consistent water supply throughout the year for a country like Korea. where the rainy season is concentrated during the summer monsoon.
文摘Two different kinds of black liquor from the papermaking industry were treated by acidification and reuse. The experimental parameters and conditions were discussed in detail. The experimental results indicated that the treatment process mentioned in this article is an effective process for the treatment of black liquor from the papermaking industry. By the treatment, the solid materials in black liquor are transferred into two by products and the other components are reused or evaporated. Thus, no wastewater except some condensation water would be discharged in pulping process and the problem of pollution of black liquor would be effectively solved.
基金supported by PUB, Singapore’s National Water Agency under the project ‘‘Development of 8 inch Novel High Efficiency Pressure-Retarded Osmosis (PRO) Membrane Modules towards Potential Pilot Testing and Field Validation” with NUS grant No. R-279-000-555-592Singapore National Research Foundation for supporting the project entitled, ‘‘Using Cold Energy from Regasification of Liquefied Natural Gas (LNG) for Novel Hybrid Seawater Desalination Technologies” (Grant number: R-279-000-456-279)BASF SE, Germany for partially funding this project with a grant number of R-279-000-363-597
文摘Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy consumption and fouling propensity for broad sustainable applications.In addition,different membranes face various challenges in their specific applications during long-term operations.In this short review,we will summarize the recent progresses in emerging membrane technologies and system integration to advance and sustain water reuse and desalination with discussion on their challenges and perspectives.
基金This project is supported by Provincial Natural Science Foundation of both Hebei (No.699059) and Tianjin(No.003804611).
文摘To deal with a bottom up process model for design reuses a specific extended house of quality(EHOQ)is proposed Two kinds of supported functions,basic supported functions and new supported functions,are defined.Two processes to determine two kinds of functions are presented A kind of EHOQ matrix for a company is given and its management steps are studied.
基金supported by National Natural Science Foundation of China (Grant No. 50835008, Grant No. 50875237, Grant No. 50705084)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z190, Grant No. 2008AA042301)
文摘Configuration knowledge is a dynamic information set which is evolving and enriching on and on. Product model is the instantiation of configuration knowledge and the evolution of configuration knowledge is the essential inherent reason which causes the models dynamic evolvement. In the traditional model evolvement process, the inheriting and reuse of configuration knowledge was always ignored. Aim at solving the above problem, the multistage rhombus evolution mode of configuration knowledge is discussed in this paper. The product model based on configuration knowledge is put forward in different levels to achieve the models dynamic evolvement and automatic upgrading. The evolving configuration knowledge drives the product model to evolve directly according to the rule of up-layer evolvement. Furthermore, a new configuration knowledge reuse and optimization technology is presented to inheriting and reuse the foregone configuration knowledge in the course of model evolvement. At last, the air separation equipment which is related with the project is taken as an example to illuminate that the presented model evolvement and configuration knowledge reuse technology are validity and practical.