Red tide is an ecological disaster caused by the excessive proliferation of photosynthetic algae in the ocean.The frequent occurrences of red tide have brought serious harms to the marine aquaculture and caused signif...Red tide is an ecological disaster caused by the excessive proliferation of photosynthetic algae in the ocean.The frequent occurrences of red tide have brought serious harms to the marine aquaculture and caused significant economic losses to the marine industry.Red tide prediction can alleviate and even stop the long-term damages to marine ecosystems,which helps maintain the ecological balance of the ocean environment and contributes to the Sustainable Development Goal of“life below water”formulated by the United Nations.Aiming at red tide prediction using remote sensing technology,this study proposed a novel approach of red tide prediction using time-series hyperspectral observations,and examined the proposed method in the Xinghai Bay,China.Three spectral indices,namely the twoband ratio(TBR),the three-band spectral index(TBSI),and the fluorescence baseline height(FLH),were used to reduce the dimensionality of hyperspectral data and extract spectral features.Two machine learning models including the random forest(RF)and the support vector machine(SVM)were employed to predict whether red tide would occur on a target day based on the time-series spectral indices obtained in the previous days.By comparing and analyzing the prediction results of multiple machine learning models trained with different spectral indices and temporal lengths,it is found that both the RF and the SVM models can predict the red tide outbreaks at the accuracies over 0.9 using adequate temporal lengths of input data.When the temporal length of input data is limited,however,it is suggested to use the RF model,which accurately predicts red tide outbreaks using the temporal input of the 2-d TBSI.The proposed method is expected to provide oceanic and maritime agencies with early warnings on red tide outbreaks and ensure the safety of the coastal environment in large spatial scales using optical remote sensing technology.展开更多
Propelled by the rise of artificial intelligence,cloud services,and data center applications,next-generation,low-power,local-oscillator-less,digital signal processing(DSP)-free,and short-reach coherent optical communi...Propelled by the rise of artificial intelligence,cloud services,and data center applications,next-generation,low-power,local-oscillator-less,digital signal processing(DSP)-free,and short-reach coherent optical communication has evolved into an increasingly prominent area of research in recent years.Here,we demonstrate DSP-free coherent optical transmission by analog signal processing in frequency synchronous optical network(FSON)architecture,which supports polarization multiplexing and higher-order modulation formats.The FSON architecture that allows the numerous laser sources of optical transceivers within a data center can be quasi-synchronized by means of a tree-distributed homology architecture.In conjunction with our proposed pilot-tone assisted Costas loop for an analog coherent receiver,we achieve a record dual-polarization 224-Gb/s 16-QAM 5-km mismatch transmission with reset-free carrier phase recovery in the optical domain.Our proposed DSP-free analog coherent detection system based on the FSON makes it a promising solution for next-generation,low-power,and high-capacity coherent data center interconnects.展开更多
To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motio...To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motion parameters is studied. According to the characteristics of the output signals of the IMU and the GPS, without the IMU synchronization signal, the synchronization circuit based on CPLD is designed and developed, which need not alter the configurations of the IMU and GPS. Experiments of measuring vehicle motion parameters, which rely on the synchronization circuit to realize IMU/GPS data synchronization, are made. The driving routes in experiments comprise a curve and a straight line. Experimental results show that the designed circuit can accurately measure the synchronization time difference and the IMU period, and can effectively solve the data synchronization in IMU/GPS integration. Furthermore, the IMU/GPS integrated measurement system based on the synchronization circuit can measure and calculate many vehicle motion parameters in high frequency mode.展开更多
The security-related problem during the data exchange is not considered in the SyncML protocol. To solve this problem, SyncML is enhanced with a secure data synchronization exchange service application program interfa...The security-related problem during the data exchange is not considered in the SyncML protocol. To solve this problem, SyncML is enhanced with a secure data synchronization exchange service application program interface (SDSXS-API) to ensure the reliability, the integrity, and the security in the data transmission and exchange. The design and the implementation of SDSXS-API are also given. The proposed APIs can be conveniently used as a uniform exchange interface for any related application programs. And their effectiveness is verified in the prototype mobile database system.展开更多
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a...By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.展开更多
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor...Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal...Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal variations on the pixels selected from different vegetation type were analyzed. The Savitzky-Golay filtering algorithm was applied to perform a filtration processing for MODIS-NDVI time-series data. The processed time-series curves can reflect a real variation trend of vegetation growth. The NDVI time-series curves of coniferous forest, high-cold meadow, high-cold meadow steppe and high-cold steppe all appear a mono-peak model during vegetation growth with the maximum peak occurring in August. A decision-tree classification model was established according to either NDVI time-series data or land surface temperature data. And then, both classifying and processing for vegetations were carried out through the model based on NDVI time-series curves. An accuracy test illustrates that classification results are of high accuracy and credibility and the model is conducive for studying a climate variation and estimating a vegetation production at regional even global scale.展开更多
In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about samplin...In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.展开更多
In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigate...In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
As the rapid development of Wireless Communications and the popularity of the Intelligent Terminal, data synchronization has been a social focus, meanwhile, user terminal devices are increasingly diversified, traditio...As the rapid development of Wireless Communications and the popularity of the Intelligent Terminal, data synchronization has been a social focus, meanwhile, user terminal devices are increasingly diversified, traditional synchronization technology based C/S mode has such deficiencies as insufficient amount of transmitting data and bad Real-time efficiency. It has become increasingly unable to meet the needs of future development. In this paper, we proposed and designed a new method and system by separating control with transmission to synchronize data to ensure Real-time data and improve efficiency.展开更多
In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for s...In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.展开更多
Fast data synchronization in wireless ad hoc networks is a challenging and critical problem.It is fundamental for efficient information fusion,control and decision in distributed systems.Previously,distributed data sy...Fast data synchronization in wireless ad hoc networks is a challenging and critical problem.It is fundamental for efficient information fusion,control and decision in distributed systems.Previously,distributed data synchronization was mainly studied in the latency-tolerant distributed databases,or assuming the general model of wireless ad hoc networks.In this paper,we propose a pair of linear network coding(NC)and all-to-all broadcast based fast data synchronization algorithms for wireless ad hoc networks whose topology is under operator’s control.We consider both data block selection and transmitting node selection for exploiting the benefits of NC.Instead of using the store-and-forward protocol as in the conventional uncoded approach,a compute-and-forward protocol is used in our scheme,which improves the transmission efficiency.The performance of the proposed algorithms is studied under different values of network size,network connection degree,and per-hop packet error rate.Simulation results demonstrate that our algorithms significantly reduce the times slots used for data synchronization compared with the baseline that does not use NC.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopte...This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they ofte...The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology.展开更多
According to the different equipment, different system and heterogeneous database have be information "isolated island" problem, and the data of equipments can be updated in real time on the business node. The paper...According to the different equipment, different system and heterogeneous database have be information "isolated island" problem, and the data of equipments can be updated in real time on the business node. The paper proposes a program of data synchronization platform based on J2EE (JMS) and XML, and detailed analysis and description of the workflow system, its frame structure and the key technology. Practice shows that this scheme has the advantages of convenient and real-time etc..展开更多
This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditiona...This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditional methods in complex real-world scenarios.By combining deep reinforcement learning with a transfer learning framework,cross-scenario knowledge transfer is achieved,significantly enhancing the adaptability of the control strategy.First,a sub-synchronous oscillation emergency control model for the wind power grid integration system is constructed under fixed scenarios based on deep reinforcement learning.A reward evaluation system based on the active power oscillation pattern of the system is proposed,introducing penalty functions for the number of machine-shedding rounds and the number of machines shed.This avoids the economic losses and grid security risks caused by the excessive one-time shedding of wind turbines.Furthermore,transfer learning is introduced into model training to enhance the model’s generalization capability in dealing with complex scenarios of actual wind power grid integration systems.By introducing the Maximum Mean Discrepancy(MMD)algorithm to calculate the distribution differences between source data and target data,the online decision-making reliability of the emergency control model is improved.Finally,the effectiveness of the proposed emergency control method for multi-scenario sub-synchronous oscillation in wind power grid integration systems based on transfer learning is analyzed using the New England 39-bus system.展开更多
With the increasing importance of data security, the adoption of data synchronization technology to realize disaster recovery backup of the database is an important measure to ensure data security. Oracle, as the main...With the increasing importance of data security, the adoption of data synchronization technology to realize disaster recovery backup of the database is an important measure to ensure data security. Oracle, as the main database used at present, provides data synchronization mechanisms such as DataGuard and GoldenGate. This paper analyzes and compares these data synchronization technologies, and puts forward a scheme combining DataGuard and GoldenGate to realize disaster recovery of information system data. It also meets the needs of data sharing, read-write separation and so on.展开更多
基金The National Natural Science Foundation of China under contract No.42406188the Natural Science Foundation of Liaoning Province under contract No.2024-BS-022+1 种基金the Dalian High-Level Talent Innovation Program under contract No.2022RG02the Fundamental Research Funds for the Central Universities under contract No.3132025107.
文摘Red tide is an ecological disaster caused by the excessive proliferation of photosynthetic algae in the ocean.The frequent occurrences of red tide have brought serious harms to the marine aquaculture and caused significant economic losses to the marine industry.Red tide prediction can alleviate and even stop the long-term damages to marine ecosystems,which helps maintain the ecological balance of the ocean environment and contributes to the Sustainable Development Goal of“life below water”formulated by the United Nations.Aiming at red tide prediction using remote sensing technology,this study proposed a novel approach of red tide prediction using time-series hyperspectral observations,and examined the proposed method in the Xinghai Bay,China.Three spectral indices,namely the twoband ratio(TBR),the three-band spectral index(TBSI),and the fluorescence baseline height(FLH),were used to reduce the dimensionality of hyperspectral data and extract spectral features.Two machine learning models including the random forest(RF)and the support vector machine(SVM)were employed to predict whether red tide would occur on a target day based on the time-series spectral indices obtained in the previous days.By comparing and analyzing the prediction results of multiple machine learning models trained with different spectral indices and temporal lengths,it is found that both the RF and the SVM models can predict the red tide outbreaks at the accuracies over 0.9 using adequate temporal lengths of input data.When the temporal length of input data is limited,however,it is suggested to use the RF model,which accurately predicts red tide outbreaks using the temporal input of the 2-d TBSI.The proposed method is expected to provide oceanic and maritime agencies with early warnings on red tide outbreaks and ensure the safety of the coastal environment in large spatial scales using optical remote sensing technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.62405250 and 62471404)the China Postdoctoral Science Foundation(Grant No.2024M762955)+1 种基金the Key Project of Westlake Institute for Optoelectronics(Grant No.2023GD003)the Optical Com-munication and Sensing Laboratory,School of Engineering,Westlake University.
文摘Propelled by the rise of artificial intelligence,cloud services,and data center applications,next-generation,low-power,local-oscillator-less,digital signal processing(DSP)-free,and short-reach coherent optical communication has evolved into an increasingly prominent area of research in recent years.Here,we demonstrate DSP-free coherent optical transmission by analog signal processing in frequency synchronous optical network(FSON)architecture,which supports polarization multiplexing and higher-order modulation formats.The FSON architecture that allows the numerous laser sources of optical transceivers within a data center can be quasi-synchronized by means of a tree-distributed homology architecture.In conjunction with our proposed pilot-tone assisted Costas loop for an analog coherent receiver,we achieve a record dual-polarization 224-Gb/s 16-QAM 5-km mismatch transmission with reset-free carrier phase recovery in the optical domain.Our proposed DSP-free analog coherent detection system based on the FSON makes it a promising solution for next-generation,low-power,and high-capacity coherent data center interconnects.
文摘To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motion parameters is studied. According to the characteristics of the output signals of the IMU and the GPS, without the IMU synchronization signal, the synchronization circuit based on CPLD is designed and developed, which need not alter the configurations of the IMU and GPS. Experiments of measuring vehicle motion parameters, which rely on the synchronization circuit to realize IMU/GPS data synchronization, are made. The driving routes in experiments comprise a curve and a straight line. Experimental results show that the designed circuit can accurately measure the synchronization time difference and the IMU period, and can effectively solve the data synchronization in IMU/GPS integration. Furthermore, the IMU/GPS integrated measurement system based on the synchronization circuit can measure and calculate many vehicle motion parameters in high frequency mode.
文摘The security-related problem during the data exchange is not considered in the SyncML protocol. To solve this problem, SyncML is enhanced with a secure data synchronization exchange service application program interface (SDSXS-API) to ensure the reliability, the integrity, and the security in the data transmission and exchange. The design and the implementation of SDSXS-API are also given. The proposed APIs can be conveniently used as a uniform exchange interface for any related application programs. And their effectiveness is verified in the prototype mobile database system.
基金supported by the open research fund of the Key Laboratory of Agri-informatics,Ministry of Agriculture and the fund of Outstanding Agricultural Researcher,Ministry of Agriculture,China
文摘By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.
文摘Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
基金the Frontier Program of the Knowledge Innovation Program of Chinese Academy of Sciences
文摘Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal variations on the pixels selected from different vegetation type were analyzed. The Savitzky-Golay filtering algorithm was applied to perform a filtration processing for MODIS-NDVI time-series data. The processed time-series curves can reflect a real variation trend of vegetation growth. The NDVI time-series curves of coniferous forest, high-cold meadow, high-cold meadow steppe and high-cold steppe all appear a mono-peak model during vegetation growth with the maximum peak occurring in August. A decision-tree classification model was established according to either NDVI time-series data or land surface temperature data. And then, both classifying and processing for vegetations were carried out through the model based on NDVI time-series curves. An accuracy test illustrates that classification results are of high accuracy and credibility and the model is conducive for studying a climate variation and estimating a vegetation production at regional even global scale.
文摘In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
基金Project supported by the NBHM Research Project (Grant Nos.2/48(7)/2012/NBHM(R.P.)/R and D II/12669)
文摘In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.
文摘As the rapid development of Wireless Communications and the popularity of the Intelligent Terminal, data synchronization has been a social focus, meanwhile, user terminal devices are increasingly diversified, traditional synchronization technology based C/S mode has such deficiencies as insufficient amount of transmitting data and bad Real-time efficiency. It has become increasingly unable to meet the needs of future development. In this paper, we proposed and designed a new method and system by separating control with transmission to synchronize data to ensure Real-time data and improve efficiency.
基金partially supported by the National Science Foundation of China(11272791,61364003,and 61203006)the Innovation Program of Shanghai Municipal Education Commission(10ZZ61 and 14ZZ151)the Science and Technology Foundation of Guizhou Province(20122316)
文摘In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.
基金This work is financially supported by Beijing Municipal Natural Science Foundation(No.L202012)the Open Research Project of the State Key Laboratory of Media Convergence and Communication,Communication University of China(No.SKLMCC2020KF008)the Fundamental Research Funds for the Central Universities(No.2020RC05).
文摘Fast data synchronization in wireless ad hoc networks is a challenging and critical problem.It is fundamental for efficient information fusion,control and decision in distributed systems.Previously,distributed data synchronization was mainly studied in the latency-tolerant distributed databases,or assuming the general model of wireless ad hoc networks.In this paper,we propose a pair of linear network coding(NC)and all-to-all broadcast based fast data synchronization algorithms for wireless ad hoc networks whose topology is under operator’s control.We consider both data block selection and transmitting node selection for exploiting the benefits of NC.Instead of using the store-and-forward protocol as in the conventional uncoded approach,a compute-and-forward protocol is used in our scheme,which improves the transmission efficiency.The performance of the proposed algorithms is studied under different values of network size,network connection degree,and per-hop packet error rate.Simulation results demonstrate that our algorithms significantly reduce the times slots used for data synchronization compared with the baseline that does not use NC.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61304064)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant Nos.15B067 and 16C0475)a Discovering Grant from Australian Research Council
文摘This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
文摘The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology.
文摘According to the different equipment, different system and heterogeneous database have be information "isolated island" problem, and the data of equipments can be updated in real time on the business node. The paper proposes a program of data synchronization platform based on J2EE (JMS) and XML, and detailed analysis and description of the workflow system, its frame structure and the key technology. Practice shows that this scheme has the advantages of convenient and real-time etc..
基金funded by Sponsorship of Science and Technology Project of State Grid Xinjiang Electric Power Co.,Ltd.,grant number SGXJ0000TKJS2400168.
文摘This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditional methods in complex real-world scenarios.By combining deep reinforcement learning with a transfer learning framework,cross-scenario knowledge transfer is achieved,significantly enhancing the adaptability of the control strategy.First,a sub-synchronous oscillation emergency control model for the wind power grid integration system is constructed under fixed scenarios based on deep reinforcement learning.A reward evaluation system based on the active power oscillation pattern of the system is proposed,introducing penalty functions for the number of machine-shedding rounds and the number of machines shed.This avoids the economic losses and grid security risks caused by the excessive one-time shedding of wind turbines.Furthermore,transfer learning is introduced into model training to enhance the model’s generalization capability in dealing with complex scenarios of actual wind power grid integration systems.By introducing the Maximum Mean Discrepancy(MMD)algorithm to calculate the distribution differences between source data and target data,the online decision-making reliability of the emergency control model is improved.Finally,the effectiveness of the proposed emergency control method for multi-scenario sub-synchronous oscillation in wind power grid integration systems based on transfer learning is analyzed using the New England 39-bus system.
文摘With the increasing importance of data security, the adoption of data synchronization technology to realize disaster recovery backup of the database is an important measure to ensure data security. Oracle, as the main database used at present, provides data synchronization mechanisms such as DataGuard and GoldenGate. This paper analyzes and compares these data synchronization technologies, and puts forward a scheme combining DataGuard and GoldenGate to realize disaster recovery of information system data. It also meets the needs of data sharing, read-write separation and so on.