Ecological barriers present significant challenges to bird migration by limiting the availability of stopover sites and shelters. The Qinghai-Tibet Plateau, a major migratory barrier located in higher latitude Central...Ecological barriers present significant challenges to bird migration by limiting the availability of stopover sites and shelters. The Qinghai-Tibet Plateau, a major migratory barrier located in higher latitude Central Asia, exerts a substantial influence on avian migration patterns. Species traversing such ecological barriers may adopt multiple optimal routes, which can contribute to the formation of migratory divides. From 2018 to 2021, the migration routes of 13 adult Common Cuckoos (Cuculus canorus) breeding in the north of the Qinghai-Tibet Plateau were tracked using satellite transmitters. We found Common Cuckoos have two primary migration routes: western and eastern, respectively following western and eastern edges of the Qinghai-Tibet plateau. The eastern and western routes are likely the optimal routes for the Central Asian Common Cuckoos population to navigate the Qinghai-Tibet Plateau. Furthermore, two individuals exhibited intermediate migration routes, suggesting attempted traverses of the Qinghai-Tibet Plateau, although neither completed the migration. These intermediate routes may indicate migratory behavior influenced by hybridization between eastern and western populations or migratory flexibility. Common Cuckoos exhibit significantly faster migration speed, flight speed, and shorter stopover durations during spring compared to autumn. The observed seasonal differences in migration behavior support birds following time-minimization strategies during spring migration. These results revealed the diverse migration routes of Common Cuckoos shaped by the Qinghai-Tibet Plateau and seasonal variation in migration patterns.展开更多
Long-distance migratory birds travel more rapidly in spring than in autumn,as they face temporal breeding constraints.However,several species travel slower in spring owing to environmental influences,such as food avai...Long-distance migratory birds travel more rapidly in spring than in autumn,as they face temporal breeding constraints.However,several species travel slower in spring owing to environmental influences,such as food availability and wind conditions.GPS trackers were attached to 17 Whooper Swans(Cygnus cygnus) inhabiting northeastern Mongolia,to determine their migration routes and stopover sites in spring and autumn.Differences between spring and autumn migrations,migration-influencing parameters,and the effect of spring stopover site temperatures were analyzed.Six swans completed perfect tours between their wintering and breeding sites,and these data were used for analysis.Spring migration lasted 57 days,with 49.2 days spent at 3.7 stopover sites.Autumn migration lasted 21.5 days,with 17.5 days spent at 1.0 stopover sites.Thus,the swans traveled more rapidly in autumn than in spring.Migration distance,number of stopovers,migration speed,and straightness were important migration determinants in both spring and autumn.Migration distance,stopover duration,number of stopovers,daily travel speed,travel duration,and migration speed differed significantly between spring and autumn.During spring migration,the temperature at the current stopover sites and that at the future stopover sites displayed significant variations(t=1585.8,df=631.6,p <0.001).These findings are critical for the conservation and management of Whooper Swans and their key habitats in East Asian regions,and the data are anticipated to make a particularly significant contribution toward developing detailed management plans for the conservation of their key habitats.展开更多
Recently-developed capabilities for tracking the movements of individual birds over the course of a year or longer has provided increasing evidence for consistent individual differences in migration schedules and dest...Recently-developed capabilities for tracking the movements of individual birds over the course of a year or longer has provided increasing evidence for consistent individual differences in migration schedules and destinations. This raises questions about the relative importance of individual consistency versus flexibility in the evolution of migration strategies, and has implications for the ability of populations to respond to climatic change. Using geolocators, we tracked the migrations of Scopoli's shearwaters Calonectris diomedea breeding in Linosa (Italy) across three years, and analysed timing and spatial aspects of their movements. Birds showed remarkable variation in their main wintering destination along the western coast of Africa. We found significant individual consistency in the total distance traveled, time spent in transit, and time that individuals spent in the win- tering areas. We found extensive sex differences in scheduling, duration, distances and destinations of migratory journeys. We also found sex differences in the degree of individual consistency in aspects of migration behaviour. Despite strong evidence for individual consistency, which indicates that migration journeys from the same bird tended to be more similar than those of dif- ferent birds, there remained substantial intra-individual variation between years. Indeed, we also found clear annual differences in departure dates, return dates, wintering period, the total distance traveled and re^rn routes from wintering grounds back to the colony. These findings show that this population flexibly shifts migration schedules as well as routes between years in response to direct or indirect effects of heterogeneity in the environment, while maintaining consistent individual migration strategies [Current Zoology 60 (5): 631-641, 2014].展开更多
Background:While the general migration routes of most waders are known,details concerning connectivity between breeding grounds, stopover sites and wintering grounds are often lacking.Such information is critical from...Background:While the general migration routes of most waders are known,details concerning connectivity between breeding grounds, stopover sites and wintering grounds are often lacking.Such information is critical from the conservation perspective and necessary for understanding the annual cycle.Studies are especially needed to identify key stopover sites in remote regions. Using satellite transmitters, we traced spring and autumn migration routes and connectivity of Grey Plovers on the East Atlantic Flyway.Our findings also revealed the timing,flight speed, and duration of migrations. Methods:We used ARGOS satellite transmitters to track migration routes of 11 Grey Plovers that were captured at the German Wadden Sea where they had stopped during migration.Birds were monitored for up to 3 years,2011-2014.Results:Monitoring signals indicated breeding grounds in the Taimyr and Yamal regions;important staging sites on the coasts of the southern Pechora Sea and the Kara Sea;and wintering areas that ranged from NW-Ireland to Guinea Bissau.The average distance traveled from wintering grounds to breeding grounds was 5534 km. Migration duration varied between 42 and 152 days;during this period birds spent about 95% of the time at staging sites.In spring most plovers crossed inland Eastern Europe, whereas in autumn most followed the coastline.Almost all of the birds departed during favorable wind conditions within just 4 days (27-30 May) on northward migration from the Wadden Sea.In spring birds migrated significantly faster between the Wadden Sea and the Arctic than on return migration in autumn (12 vs.37 days),with shorter stopovers during the northward passage.Conclusions:Our study shows that satellite tags can shed considerable light on migration strategies by revealing the use of different regions during the annual cycle and by providing detailed quantitative data on population connectivity and migration timing.展开更多
Genetic algorithm (GA) is one of the alternative approaches for solving the shortest path routing problem. In previous work, we have developed a coarse-grained parallel GA-based shortest path routing algorithm. With p...Genetic algorithm (GA) is one of the alternative approaches for solving the shortest path routing problem. In previous work, we have developed a coarse-grained parallel GA-based shortest path routing algorithm. With parallel GA, there is a GA operator called migration, where a chromosome is taken from one sub-population to replace a chromosome in another sub-population. Which chromosome to be taken and replaced is subjected to the migration strategy used. There are four different migration strategies that can be employed: best replace worst, best replace random, random replace worst, and random replace random. In this paper, we are going to evaluate the effect of different migration strategies on the parallel GA-based routing algorithm that has been developed in the previous work. Theoretically, the migration strategy best replace worst should perform better than the other strategies. However, result from simulation shows that even though the migration strategy best replace worst performs better most of the time, there are situations when one of the other strategies can perform just as well, or sometimes better.展开更多
Intrinsic attenuation of the earth causes energy loss and phase distortion in seismic wave propagation.To obtain high-resolution imaging results,these negative effects must be considered during reverse time migration(...Intrinsic attenuation of the earth causes energy loss and phase distortion in seismic wave propagation.To obtain high-resolution imaging results,these negative effects must be considered during reverse time migration(RTM).We can easily implement attenuation-compensated RTM using the constant Q viscoacoustic wave equation with decoupled amplitude attenuation and phase dispersion terms.However,the nonphysical amplitude-compensation process will inevitably amplify the high-frequency noise in the wavefield in an exponential form,causing the numerical simulation to become unstable.This is due to the fact that the amplitude of the compensation grows exponentially with frequency.In order to achieve stable attenuation-compensated RTM,we modify the analytic expression of the attenuation compensation extrapolation operator and make it only compensate for amplitude loss within the effective frequency band.Based on this modified analytic formula,we then derive an explicit time-space domain attenuation compensation extrapolation operator.Finally,the implementation procedure of stable attenuation-compensated RTM is presented.In addition to being simple to implement,the newly proposed attenuation-compensated extrapolation operator is superior to the conventional low-pass filter in suppressing random noise,which will further improve the imaging resolution.We use two synthetic and one land seismic datasets to verify the stability and effectiveness of the proposed attenuationcompensated RTM in improving imaging resolution in viscous media.展开更多
The phenomenon of cooperation is prevalent in both nature and human society. In this paper a simulative model is developed to examine how the strategy continuity influences cooperation in the spatial prisoner's games...The phenomenon of cooperation is prevalent in both nature and human society. In this paper a simulative model is developed to examine how the strategy continuity influences cooperation in the spatial prisoner's games in which the players migrate through the success-driven migration mechanism. Numerical simulations illustrate that the strategy continuity promotes cooperation at a low rate of migration, while impeding cooperation when the migration rate is higher. The influence of strategy continuity is also dependent on the game types. Through a more dynamic analysis, the different effects of the strategy continuity at low and high rates of migration are explained by the formation, expansion, and extinction of the self-assembled clusters of "partial-cooperators" within the gaming population.展开更多
To the Editor:Melanoma is the most aggressive and lethal cutaneous malignancy,with its incidence increasing annually.Surgical resection is effective for early-stage melanoma;however,therapeutic strategies for metastat...To the Editor:Melanoma is the most aggressive and lethal cutaneous malignancy,with its incidence increasing annually.Surgical resection is effective for early-stage melanoma;however,therapeutic strategies for metastatic melanoma are limited by poor prognosis and adverse effects.[1]Our research team previously screened six compounds(Sanggenon C,Kuwanon A[KA],Kuwanon E,Moracin O,Moracin P,and 3′-geranyl-3-prenyl-2′,4′,5,7-tetrahydroxyflavone)with strong anti-melanoma effects from 28 compounds in Morus alba L.We focused on KA,whose structure is shown in Supplementary Figure 1A,http://links.lww.com/CM9/C458 with anti-inflammatory,antioxidant,and anticancer properties.[2,3]Its anti-tumor mechanisms in melanoma remain unclear.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31672296).
文摘Ecological barriers present significant challenges to bird migration by limiting the availability of stopover sites and shelters. The Qinghai-Tibet Plateau, a major migratory barrier located in higher latitude Central Asia, exerts a substantial influence on avian migration patterns. Species traversing such ecological barriers may adopt multiple optimal routes, which can contribute to the formation of migratory divides. From 2018 to 2021, the migration routes of 13 adult Common Cuckoos (Cuculus canorus) breeding in the north of the Qinghai-Tibet Plateau were tracked using satellite transmitters. We found Common Cuckoos have two primary migration routes: western and eastern, respectively following western and eastern edges of the Qinghai-Tibet plateau. The eastern and western routes are likely the optimal routes for the Central Asian Common Cuckoos population to navigate the Qinghai-Tibet Plateau. Furthermore, two individuals exhibited intermediate migration routes, suggesting attempted traverses of the Qinghai-Tibet Plateau, although neither completed the migration. These intermediate routes may indicate migratory behavior influenced by hybridization between eastern and western populations or migratory flexibility. Common Cuckoos exhibit significantly faster migration speed, flight speed, and shorter stopover durations during spring compared to autumn. The observed seasonal differences in migration behavior support birds following time-minimization strategies during spring migration. These results revealed the diverse migration routes of Common Cuckoos shaped by the Qinghai-Tibet Plateau and seasonal variation in migration patterns.
基金the National Institute of Bio-logical Resources,funded by the Ministry of Environment,Republic of Korea(grant numbers NIBR202216101 and NIBR202223101).
文摘Long-distance migratory birds travel more rapidly in spring than in autumn,as they face temporal breeding constraints.However,several species travel slower in spring owing to environmental influences,such as food availability and wind conditions.GPS trackers were attached to 17 Whooper Swans(Cygnus cygnus) inhabiting northeastern Mongolia,to determine their migration routes and stopover sites in spring and autumn.Differences between spring and autumn migrations,migration-influencing parameters,and the effect of spring stopover site temperatures were analyzed.Six swans completed perfect tours between their wintering and breeding sites,and these data were used for analysis.Spring migration lasted 57 days,with 49.2 days spent at 3.7 stopover sites.Autumn migration lasted 21.5 days,with 17.5 days spent at 1.0 stopover sites.Thus,the swans traveled more rapidly in autumn than in spring.Migration distance,number of stopovers,migration speed,and straightness were important migration determinants in both spring and autumn.Migration distance,stopover duration,number of stopovers,daily travel speed,travel duration,and migration speed differed significantly between spring and autumn.During spring migration,the temperature at the current stopover sites and that at the future stopover sites displayed significant variations(t=1585.8,df=631.6,p <0.001).These findings are critical for the conservation and management of Whooper Swans and their key habitats in East Asian regions,and the data are anticipated to make a particularly significant contribution toward developing detailed management plans for the conservation of their key habitats.
文摘Recently-developed capabilities for tracking the movements of individual birds over the course of a year or longer has provided increasing evidence for consistent individual differences in migration schedules and destinations. This raises questions about the relative importance of individual consistency versus flexibility in the evolution of migration strategies, and has implications for the ability of populations to respond to climatic change. Using geolocators, we tracked the migrations of Scopoli's shearwaters Calonectris diomedea breeding in Linosa (Italy) across three years, and analysed timing and spatial aspects of their movements. Birds showed remarkable variation in their main wintering destination along the western coast of Africa. We found significant individual consistency in the total distance traveled, time spent in transit, and time that individuals spent in the win- tering areas. We found extensive sex differences in scheduling, duration, distances and destinations of migratory journeys. We also found sex differences in the degree of individual consistency in aspects of migration behaviour. Despite strong evidence for individual consistency, which indicates that migration journeys from the same bird tended to be more similar than those of dif- ferent birds, there remained substantial intra-individual variation between years. Indeed, we also found clear annual differences in departure dates, return dates, wintering period, the total distance traveled and re^rn routes from wintering grounds back to the colony. These findings show that this population flexibly shifts migration schedules as well as routes between years in response to direct or indirect effects of heterogeneity in the environment, while maintaining consistent individual migration strategies [Current Zoology 60 (5): 631-641, 2014].
基金funded by the Federal Agency for Nature Conservation under the Federal Ministry for the Environment,Nature Conservation and Nuclear Safety(FKZ 3510 860 1000)the Niedersachsische Wattenmeerstiftung(project 18/10)
文摘Background:While the general migration routes of most waders are known,details concerning connectivity between breeding grounds, stopover sites and wintering grounds are often lacking.Such information is critical from the conservation perspective and necessary for understanding the annual cycle.Studies are especially needed to identify key stopover sites in remote regions. Using satellite transmitters, we traced spring and autumn migration routes and connectivity of Grey Plovers on the East Atlantic Flyway.Our findings also revealed the timing,flight speed, and duration of migrations. Methods:We used ARGOS satellite transmitters to track migration routes of 11 Grey Plovers that were captured at the German Wadden Sea where they had stopped during migration.Birds were monitored for up to 3 years,2011-2014.Results:Monitoring signals indicated breeding grounds in the Taimyr and Yamal regions;important staging sites on the coasts of the southern Pechora Sea and the Kara Sea;and wintering areas that ranged from NW-Ireland to Guinea Bissau.The average distance traveled from wintering grounds to breeding grounds was 5534 km. Migration duration varied between 42 and 152 days;during this period birds spent about 95% of the time at staging sites.In spring most plovers crossed inland Eastern Europe, whereas in autumn most followed the coastline.Almost all of the birds departed during favorable wind conditions within just 4 days (27-30 May) on northward migration from the Wadden Sea.In spring birds migrated significantly faster between the Wadden Sea and the Arctic than on return migration in autumn (12 vs.37 days),with shorter stopovers during the northward passage.Conclusions:Our study shows that satellite tags can shed considerable light on migration strategies by revealing the use of different regions during the annual cycle and by providing detailed quantitative data on population connectivity and migration timing.
文摘Genetic algorithm (GA) is one of the alternative approaches for solving the shortest path routing problem. In previous work, we have developed a coarse-grained parallel GA-based shortest path routing algorithm. With parallel GA, there is a GA operator called migration, where a chromosome is taken from one sub-population to replace a chromosome in another sub-population. Which chromosome to be taken and replaced is subjected to the migration strategy used. There are four different migration strategies that can be employed: best replace worst, best replace random, random replace worst, and random replace random. In this paper, we are going to evaluate the effect of different migration strategies on the parallel GA-based routing algorithm that has been developed in the previous work. Theoretically, the migration strategy best replace worst should perform better than the other strategies. However, result from simulation shows that even though the migration strategy best replace worst performs better most of the time, there are situations when one of the other strategies can perform just as well, or sometimes better.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021QNLM020001)the Major Scientific and Technological Projects of Shandong Energy Group(No.SNKJ2022A06-R23)the Major Scientific and Technological Projects of CNPC(No.ZD2019-183-003).
文摘Intrinsic attenuation of the earth causes energy loss and phase distortion in seismic wave propagation.To obtain high-resolution imaging results,these negative effects must be considered during reverse time migration(RTM).We can easily implement attenuation-compensated RTM using the constant Q viscoacoustic wave equation with decoupled amplitude attenuation and phase dispersion terms.However,the nonphysical amplitude-compensation process will inevitably amplify the high-frequency noise in the wavefield in an exponential form,causing the numerical simulation to become unstable.This is due to the fact that the amplitude of the compensation grows exponentially with frequency.In order to achieve stable attenuation-compensated RTM,we modify the analytic expression of the attenuation compensation extrapolation operator and make it only compensate for amplitude loss within the effective frequency band.Based on this modified analytic formula,we then derive an explicit time-space domain attenuation compensation extrapolation operator.Finally,the implementation procedure of stable attenuation-compensated RTM is presented.In addition to being simple to implement,the newly proposed attenuation-compensated extrapolation operator is superior to the conventional low-pass filter in suppressing random noise,which will further improve the imaging resolution.We use two synthetic and one land seismic datasets to verify the stability and effectiveness of the proposed attenuationcompensated RTM in improving imaging resolution in viscous media.
基金Supported by the National Natural Science Foundation of China(61702076,71371040,71533001,71371040)the Fundamental Research Funds for the Central Universities(DUT17RW131)
文摘The phenomenon of cooperation is prevalent in both nature and human society. In this paper a simulative model is developed to examine how the strategy continuity influences cooperation in the spatial prisoner's games in which the players migrate through the success-driven migration mechanism. Numerical simulations illustrate that the strategy continuity promotes cooperation at a low rate of migration, while impeding cooperation when the migration rate is higher. The influence of strategy continuity is also dependent on the game types. Through a more dynamic analysis, the different effects of the strategy continuity at low and high rates of migration are explained by the formation, expansion, and extinction of the self-assembled clusters of "partial-cooperators" within the gaming population.
文摘优化模型驱动的移动边缘计算(Mobile Edge Computing,MEC)网络任务卸载与迁移策略研究基于物联网设备激增和5G技术推广的背景展开。MEC通过将计算资源迁移至网络边缘,显著降低数据传输延迟和云端压力。为此,提出一系列任务卸载与迁移策略,并通过性能评估验证其效果。实验结果表明,所提策略在典型应用场景中显著优化了关键性能指标:延迟降低约25%,能耗减少30%,任务吞吐量提升20%。具体优化包括:动态资源调度实现负载均衡,改进卸载效率;基于QoS(Qua-lity of Service)保障的迁移机制确保服务稳定性;跨层优化设计提升多任务协作能力。此外,通过机器学习预测技术,动态适应网络波动,提高系统灵活性。研究结论指出,优化模型在确保资源高效分配和任务实时性方面具备突出优势,提升了MEC网络的服务质量和用户体验。策略可广泛适用于异构网络和动态环境,具备进一步拓展的潜力。
基金This study was supported by a grant from the Natural Science Foundation of Hebei Province(No.H2022206328).
文摘To the Editor:Melanoma is the most aggressive and lethal cutaneous malignancy,with its incidence increasing annually.Surgical resection is effective for early-stage melanoma;however,therapeutic strategies for metastatic melanoma are limited by poor prognosis and adverse effects.[1]Our research team previously screened six compounds(Sanggenon C,Kuwanon A[KA],Kuwanon E,Moracin O,Moracin P,and 3′-geranyl-3-prenyl-2′,4′,5,7-tetrahydroxyflavone)with strong anti-melanoma effects from 28 compounds in Morus alba L.We focused on KA,whose structure is shown in Supplementary Figure 1A,http://links.lww.com/CM9/C458 with anti-inflammatory,antioxidant,and anticancer properties.[2,3]Its anti-tumor mechanisms in melanoma remain unclear.