期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Time-reverse location of microseismic sources in viscoelastic orthotropic anisotropic medium based on attenuation compensation 被引量:4
1
作者 Tang Jie Liu Ying-Chang +1 位作者 Wen Lei Li Cong 《Applied Geophysics》 SCIE CSCD 2020年第4期544-560,共17页
Time reversal is a key component of time-reverse migration and source location using wavefield extrapolation.The implementation of time reversal depends on the time symmetry of wave equations in acoustic and elastic m... Time reversal is a key component of time-reverse migration and source location using wavefield extrapolation.The implementation of time reversal depends on the time symmetry of wave equations in acoustic and elastic media.This symmetry in time is no longer valid in attenuative medium.Not only the velocity is anisotropic in shale oil and gas reservoirs,but also the attenuation is usually anisotropic,which can be characterized by viscoelastic orthotropic media.In this paper,the fractional order viscoelastic anisotropic wave equation is used to decouple the energy dissipation and the velocity dispersion.By changing the sign of the dissipation term during backpropagation,the anisotropic attenuation is compensated and the time symmetry is restored.The attenuation compensation time-reverse location algorithm can eff ectively locate the source in viscoelastic orthotropic media.Compared to cases without attenuation compensation or using isotropic attenuation compensation,this method can remove location error caused by anisotropic attenuation and improve the imaging eff ect of the source.This paper verifi es the eff ectiveness of the method through theoretical analysis and model testing. 展开更多
关键词 Viscoelastic orthotropic anisotropy microseismic time-reverse location fractional order attenuation compensation
在线阅读 下载PDF
Time-reversed optical focusing through scattering mediaby dligital fullphase and amplitude recovery usinga single phase-only SLM 被引量:1
2
作者 Qiang Yang Xinzhu Sang Daxiong Xu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2015年第2期43-51,共9页
Focusing light though scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging.This challenge can be overcome by wavefront shaping technique,in which a time reversed(TR)wavefron... Focusing light though scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging.This challenge can be overcome by wavefront shaping technique,in which a time reversed(TR)wavefront of scattered light is generated to suppress the scattering.In previous TR optical focusing experiments,a phase only spatial light modulator(SLM)has.been typically used to control the wavefront of incident light.Unfortunately,although the phase information is reconstructed by the phase-only SLM,the amplitude information is lost,resulting in decreased peak to-background ratio(PBR)of optical focusing in the TR wavefront recon-struction.A new method of TR optical focusing through scattering media is proposed here,which numerically reonstructs the full phase and amplitude of a simulated scattered light field by using a single phase only SLM.Simulation results and the proposed optical setup show that the time-reversal of a fully developed speckle field can be digially implemented with both phase and ampltude recovery,affording a way to improve the performance of light focusing through scattering media. 展开更多
关键词 Tissue optics phase retrieval time-reversed optical focusing optical phase conjuga-tion Gerchberg-Saxton algorithm
原文传递
Tunneling conductance in ferromagnet/superconductor junctions with time-reversal symmetry breaking
3
作者 Li Hong Xin Jian Yang 《Communications in Theoretical Physics》 2025年第4期151-158,共8页
The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(... The tunneling conductance of two kinds of tunnel junctions with time-reversal symmetry breaking,normal metal/insulator/ferromagnetic metal/dx_(2-y2)+is-wave superconductor(NM/I/FM/dx_(2-y2)+is-wave SC)and NM/I/FM/dx_(2-y2)+idxy-wave SC,is calculated using the extended Blonder-Tinkham-Klapwijk theoretical method.The ratio of the subdominant s-wave and dxy-wave components to the dominant dx_(2-y2)-wave component is expressed byΔ_(s)/Δ_(D)andΔ_(d)/Δ_(D),respectively.Results show that for NM/I/FM/dx_(2-y2)+is-wave SC tunnel junctions,the splitting of the zero-bias conductance peak(ZBCP)is obtained and the splitting peaks appear at eV/Δ_(0)=±Δ_(s)/Δ_(D)with eV the applied bias voltage andΔ_(0)the zero temperature energy gap of SC.For NM/I/FM/dx_(2-y2)+idxy-wave SC tunnel junctions,there are also conductance peaks at eV/Δ_(0)=±Δ_(d)/Δ_(D)but the ZBCP does not split.For the two types of tunnel junctions,the completely reversed tunnel conductance spectrum indicates that when the exchange energy in FM is increased to a certain value,the proximity effect transforms the tunnel junctions from the'0 state'to the'πstate'.The shortening of the transport quasiparticle lifetime can weaken the proximity effect to smooth out the dips and peaks in the tunnel spectrum.This is considered a possible reason that the ZBCP splitting was not observed in some previous experiments.It is expected that these analysis results can serve as a guide for future experiments and the relevant conclusions can be confirmed. 展开更多
关键词 dx^(2)+y^(2)+is-wave dx^(2)+y^(2)+id_(ay)-wave time-reversal symmetry breaking quasiparticle lifetime effect proximity effect
原文传递
Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction
4
作者 胡知遥 李其贤 +3 位作者 张轩晨 张贺宾 黄龙刚 刘永椿 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期63-70,共8页
Atomic nonlinear interferometry has wide applications in quantum metrology and quantum information science.Here we propose a nonlinear time-reversal interferometry scheme with high robustness and metrological gain bas... Atomic nonlinear interferometry has wide applications in quantum metrology and quantum information science.Here we propose a nonlinear time-reversal interferometry scheme with high robustness and metrological gain based on the spin squeezing generated by arbitrary quadratic collective-spin interaction,which could be described by the Lipkin–Meshkov–Glick(LMG)model.We optimize the squeezing process,encoding process,and anti-squeezing process,finding that the two particular cases of the LMG model,one-axis twisting and two-axis twisting outperform in robustness and precision,respectively.Moreover,we propose a Floquet driving method to realize equivalent time reverse in the atomic system,which leads to high performance in precision,robustness,and operability.Our study sets a benchmark for achieving high precision and high robustness in atomic nonlinear interferometry. 展开更多
关键词 time-reversal interferometry spin squeezing quantum metrology
原文传递
Damage Imaging in Mesoscale Concrete Modeling Based on the Ultrasonic Time-Reversal Technique 被引量:1
5
作者 Kan Feng Qian Zhao Yaping Qiu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第1期61-70,共10页
A novel method combining the time-reversal method(TRM)with wavelet analysis was proposed for damage imaging in mesoscale concrete modeling.The damage was imaged by the convergence of time-reversed wave signals after w... A novel method combining the time-reversal method(TRM)with wavelet analysis was proposed for damage imaging in mesoscale concrete modeling.The damage was imaged by the convergence of time-reversed wave signals after wavelet analysis.Through numerical study,three concrete models of different damage sizes were built with randomly distributed aggregate particles.The time-reversal process was simulated using the reverse damage-scattered ultrasonic wave signals as excitations recorded by the sensors.Then,the wavelet analysis was employed to extract certain frequency component,which can enhance detection precision and the signalto-noise ratio.The damage imaging showed clearly the location of the defect.The results from experimental testing also demonstrated that this detection technique is an efficient and effective method for damage imaging in mesoscale concrete. 展开更多
关键词 Damage imaging Mesoscale concrete time-reversal method Wavelet analysis
原文传递
Seeing time-reversal transmission characteristics through kinetic anti-ferromagnetic Ising chain
6
作者 Chen Ying-Ming Wang Bing-Zhong 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期419-424,共6页
As an example of our new approach to complex near-field (NF) scattering of electromagnetic waves, the timereversal (TR) transmission process on an NF current-element array is mapped to the statistical process on a... As an example of our new approach to complex near-field (NF) scattering of electromagnetic waves, the timereversal (TR) transmission process on an NF current-element array is mapped to the statistical process on a kinetic Ising transmission chain. Equilibrium statistical mechanics and non-equilibrium Monte Carlo (MC) dynamics help us to find signal jamming, aging, annihilating, creating, and TR symmetry breaking on the chain with inevitable background noises; and these results are general in NF systems where complex electromagnetic scattering arises. 展开更多
关键词 time-reversAL near-field scattering symmetry breaking temporal focusing
原文传递
A novel power-combination method using a time-reversal pulse-compression technique
7
作者 陆希成 田锦 +2 位作者 张荣威 汪海波 邱扬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期283-288,共6页
The electromagnetic time-reversal(TR)technique has the characteristics of spatiotemporal focusing in a time-reversal cavity(TRC),which can be used for pulse compression,thus forming an electromagnetic pulse with high ... The electromagnetic time-reversal(TR)technique has the characteristics of spatiotemporal focusing in a time-reversal cavity(TRC),which can be used for pulse compression,thus forming an electromagnetic pulse with high peak power.A time-reversed pulse-compression method in a single channel has high pulse compression gain.However,single channel pulse compression can only generate limited gain.This paper proposes a novel TR power-combination method in a multichannel TRC to obtain higher peak power based on TR pulse-compression theory.First,the TR power-combination model is given,and the crosstalk properties of the associated channel and the influence of the reversal performance are studied.Then,the power-combination performances for the TR pulse compression,such as combined signal to noise ratio(SNR)and combined compression gain,are analyzed by numerical simulation and experimental methods.The results show that the proposed method has obvious advantages over pulse-compression methods using a single channel cavity,and is more convenient for power combination. 展开更多
关键词 time reversal time-reversal cavity power combination pulse compression
原文传递
The focusing performance with a horizontal time-reversal array at different depths in shallow water
8
作者 张同伟 杨坤德 马远良 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期347-355,共9页
The performance of time-reversal focusing with a horizontal line array at different depths is investigated by normal mode modeling and computer simulation. It is observed that the focusing performance of a bottom-moun... The performance of time-reversal focusing with a horizontal line array at different depths is investigated by normal mode modeling and computer simulation. It is observed that the focusing performance of a bottom-mounted horizontal time-reversal array is much better than that of a horizontal time-reversal array at other depths in shallow water. The normal mode modeling is used to explain this result. The absolute values of the modes at different depths are compared. It is shown that the number of modes whose absolute values close to zero is smaller at the bottom than that at other depths. It means that the horizontal time-reversal array deployed at the bottom can sample more modes, obtain more information of the probe source and achieve better focusing performance. The numerical simulations of time-reversal focusing performance under various conditions, such as different sound speed profiles, and different bottom parameters, lead to similar results. 展开更多
关键词 time-reversAL horizontal line array array depth
原文传递
Time-reversal invariance violation effect in dd scattering
9
作者 M.N.Platonova Yu.N.Uzikov 《Chinese Physics C》 2025年第3期143-152,共10页
A formalism is developed for calculating the signal of the violation of time-reversal invariance,provided that space-reflection(parity)invariance is conserved during the scattering of tensor-polarized deuterons on vec... A formalism is developed for calculating the signal of the violation of time-reversal invariance,provided that space-reflection(parity)invariance is conserved during the scattering of tensor-polarized deuterons on vector-polarized deuterons.The formalism is based on Glauber theory and fully considers the spin dependence of NN elastic scattering amplitudes and the spin structure of colliding deuterons.Numerical calculations are performed in the laboratory proton energy range T_(p)=0.1–1.2 GeV using the SAID database for spin amplitudes and in the energy region of the SPD NICA experiment corresponding to the invariant mass of the interacting nucleon pairs√S_(NN)=2.5-25GeV–25 GeV,using two phenomenological models of PN elastic scattering.It is found that only one type of the time-reversal non-invariant parity conserving interaction gives a non-zero contribution to the signal in question,which is important for isolating an unknown constant of this interaction from the corresponding data. 展开更多
关键词 time-reversal invariance spin observables deuteron-deuteron scattering
原文传递
Weighted-elastic-wave interferometric imaging of microseismic source location 被引量:4
10
作者 李磊 陈浩 王秀明 《Applied Geophysics》 SCIE CSCD 2015年第2期221-234,275,共15页
Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and... Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with Iow-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method. 展开更多
关键词 Microseismic monitoring seismic source location elastic wave interferometric imaging time-reverse imaging
在线阅读 下载PDF
Orderly hysteresis in field-driven robot swarm active matter 被引量:1
11
作者 刘艳萍 王高 +5 位作者 王培龙 袁大明 侯帅旭 金阳凯 王璟 刘雳宇 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期673-681,共9页
Boundary effect and time-reversal symmetry are hot topics in active matter. We present a biology-inspired robotenvironment-interaction active matter system with the field-drive motion and the rules of resource search,... Boundary effect and time-reversal symmetry are hot topics in active matter. We present a biology-inspired robotenvironment-interaction active matter system with the field-drive motion and the rules of resource search, resource consumption, and resource recovery. In an environmental compression–expansion cycle, the swarm emerges a series of boundary-dependent phase transitions, and the whole evolution process is time-reversal symmetry-breaking;we call this phenomenon “orderly hysteresis”. We present the influence of the environmental recovery rate on the dynamic collective behavior of the swarm. 展开更多
关键词 time-reversal symmetry-breaking phase transitions robot swarm active matter
原文传递
Split-ring-based metamaterial for far-field subwavelength focusing based on time reversal 被引量:1
12
作者 黄海燕 丁帅 +1 位作者 王秉中 臧锐 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期199-205,共7页
In this paper, split-ring-based metamaterial sheets are designed for the purpose of achieving far-field subwavelength focusing, with the aid of a time-reversal technique. The metamaterial sheets are inserted into a su... In this paper, split-ring-based metamaterial sheets are designed for the purpose of achieving far-field subwavelength focusing, with the aid of a time-reversal technique. The metamaterial sheets are inserted into a subwavelength array consist- ing of four element antennas, with the element spacing being as small as 1/15 of a wavelength. Experiments are performed to investigate the effect of the metamaterial sheets on the focusing resolution. The results demonstrate that in the presence of the metamaterial sheets, the subwavelength array exhibits the ability to achieve super-resolution focusing, while there is no super-resolution focusing without the metamaterial sheets. Further investigation shows that the metamaterial sheets are contributive to achieving super-resolution by weakening the cross-correlations of the channel impulse responses between the array elements. 展开更多
关键词 time-reversAL METAMATERIAL subwavelength focusing
原文传递
Efficient hybrid method for time reversal superresolution imaging 被引量:1
13
作者 Xiaohua Wang Wei Gao Bingzhong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期32-37,共6页
An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated b... An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging. 展开更多
关键词 time reversal(TR) decomposition of the time-reversal operator(DORT) method multiple signal classification(MUSIC) method SUPERRESOLUTION IMAGING
在线阅读 下载PDF
Research Developments and Prospects on Microseismic Source Location in Mines 被引量:21
14
作者 Jiulong Cheng Guangdong Song +2 位作者 Xiaoyun Sun Laifu Wen Fei Li 《Engineering》 2018年第5期653-660,共8页
Microseismic source location is the essential factor in microseismic monitoring technology, and its loca- tion precision has a large impact on the performance of the technique. Here, we discuss the problem of low-prec... Microseismic source location is the essential factor in microseismic monitoring technology, and its loca- tion precision has a large impact on the performance of the technique. Here, we discuss the problem of low-precision location identification for microseismic events in a mine, as may be obtained using conven-tional location methods that are based on arrival time. In this paper, microseismic location characteristics in mining are analyzed according to the characteristics of the mine's microseismic wavefield. We review research progress in mine-related microseismic source location methods in recent years, including the combination of the Geiger method with the linear method, combined microseismic event location method, optimization of relative location method, location method without pre-measured velocity, and location method without arrival time picking. The advantages and disadvantages of these methods are discussed, along with their feasible conditions. The influences of geophone distribution, first arrival time picking, and the velocity model on microseismic source location are analyzed, and measures are proposed to influence these factors. Approaches to solve the problem under study include adopting information fusion, combining and optimizing existing methods, and creating new methods to realize high-precision microseismic source location. Optimization of the velocity structure, along with applications of the time-reversal imaging technique, passive time-reversal mirror, and relative interferometric imag-ing, are expected to greatly improve microseismic location precision in mines. This paper also discusses the potential application of information fusion and deep learning methods in microseismic source location in mines. These new and innovative location methods for microseismic source location have extensive prospects for development. 展开更多
关键词 Microseismic source location Influencing factors time-reversal imaging Research progress Prospects for development
在线阅读 下载PDF
High-order time-reversal symmetry breaking normal state 被引量:1
15
作者 Meng Zeng Lun-Hui Hu +2 位作者 Hong-Ye Hu Yi-Zhuang You Congjun Wu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第3期136-148,共13页
Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors.When two superconducting gap functions with different symmetries compete,the relative ... Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors.When two superconducting gap functions with different symmetries compete,the relative phase channel(θ_(-)≡θ_(1)-θ_(2))exhibits an Ising-type Z_(2) symmetry due to the second order Josephson coupling,where θ_(1,2) are the phases of two gap functions.In contrast,the U(1) symmetry in the channel of θ_(+)≡(θ_(1)+θ_(2))/2 is intact.The phase locking,i.e.,ordering of θ_(-),can take place in the phase fluctuation regime before the onset of superconductivity,i.e.,when θ_(+) is disordered.If θ_(-) is pinned at ±π/2,then timereversal symmetry is broken in the normal state,otherwise,if θ_(-)=0,or,π,rotational symmetry is broken,leading to a nematic normal state.In both cases,the order parameters possess a 4-fermion structure beyond the scope of mean-field theory,which can be viewed as a high order symmetry breaking.We employ an effective two-component XY-model assisted by a renormalization group analysis to address this problem.As a natural by-product,we also find the other interesting intermediate phase corresponds to ordering of θ_+ but with θ_(-)disordered.This is the quartetting,or,charge-4e,superconductivity,which occurs above the low temperature Z_(2)-breaking charge-2e superconducting phase.Our results provide useful guidance for studying novel symmetry breaking phases in strongly correlated superconductors. 展开更多
关键词 SUPERCONDUCTIVITY strong correlation time-reversal breaking charge-4e
原文传递
Ultrawide Bandgap Locally Resonant Sonic Materials
16
作者 刘志明 杨盛良 赵恂 《Chinese Physics Letters》 SCIE CAS CSCD 2005年第12期3107-3110,共4页
We prepare a class of locally resonant (LR) sonic materials. The experiments demonstrate that the resonant frequency decreases with the increasing density of the scattering unit cores or with the reducing elastic co... We prepare a class of locally resonant (LR) sonic materials. The experiments demonstrate that the resonant frequency decreases with the increasing density of the scattering unit cores or with the reducing elastic constants of the silicone rubber coating. By combining three LR layers of different resonant frequencies and choosing 10 dB as the threshold of relative attenuation, we obtain an ultrawide bandgap (200-950Hz) sound material with an average transmission loss 22 dB lower than that dictated by mass density law. 展开更多
关键词 WAVE-PROPAGATION time-reversAL CRYSTALS FREQUENCY GAPS
原文传递
Numerical Investigation of Ultrasonic Guided Wave Dynamics in Piezoelectric Composite Plates for Establishing Structural Self-Sensing
17
作者 王军振 申岩峰 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第1期175-181,共7页
This article presents a numerical investigation of guided wave generation, propagation, interaction with damage, and reception in piezoelectric composite plates for the purpose of establishing structural self-awarenes... This article presents a numerical investigation of guided wave generation, propagation, interaction with damage, and reception in piezoelectric composite plates for the purpose of establishing structural self-awareness.This approach employs piezoelectric composite materials as both load bearing structure and sensing elements.Finite element modal analysis of a plate cell with Bloch-Floquet boundary condition(BFBC) is performed to understand the wave propagation characteristics in piezoelectric composite plates. A comparative study is carried out between a standard composite plate and a piezoelectric composite plate to highlight the influence of piezoelectricity on guided wave dispersion relations. Subsequently, a transient dynamic coupled-field finite element model is constructed to simulate the procedure of guided wave generation, propagation, interaction with damage, and reception in a piezoelectric composite plate. Active sensing array is designed to capture the structural response containing the damage information. Three engineering scenarios, including a pristine case, a one-damage-location case and a two-damage-location case, are considered to demonstrate the ultrasonic sensing capability of the piezoelectric composite system. Finally, time-reversal method is utilized to locate and image the damage zones. This research shows that piezoelectric composite material possesses great potential to establish structural self-awareness, if it serves both as the load bearing and structural sensing components. 展开更多
关键词 piezoelectric composite guided wave time-reversal method structural self-awareness
原文传递
Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
18
作者 喻祥敏 邓翔 +6 位作者 徐建文 郑文 兰栋 赵杰 谭新生 李邵雄 于扬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期587-592,共6页
Quantum many-body systems in which time-reversal symmetry is broken give rise to a wealth of exotic phases,and thus constitute one of the frontiers of modern condensed matter physics.Quantum simulation allows us to be... Quantum many-body systems in which time-reversal symmetry is broken give rise to a wealth of exotic phases,and thus constitute one of the frontiers of modern condensed matter physics.Quantum simulation allows us to better understand many-body systems with huge Hilbert space,where classical simulation is usually inefficient.With superconducting quantum circuit as a platform for quantum simulation,we realize synthetic Abelian gauge fields by using microwave drive and tunable coupling in loop configurations to break the time-reversal symmetry of the system.Based on high-precision manipulation and readout of circuit-QED architecture,we demonstrate the chiral ground spin current of a time-reversal symmetry broken system with nontrivial interactions.Our work is a significant attempt to simulate quantum many-body systems with time-reversal symmetry breaking in multi-qubit superconducting processors. 展开更多
关键词 superconducting qubit time-reversal symmetry breaking CHIRALITY
原文传递
Universal Pseudo-PT-Antisymmetry on One-Dimensional Atomic Optical Lattices
19
作者 Xin Wang Chang-Pu Sun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第9期303-310,共8页
We present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices, the probe susceptibility response of the lattices, regardless of atomic configurati... We present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices, the probe susceptibility response of the lattices, regardless of atomic configuration, uniformly demonstrates pseudo-PT-antisymmetry, which by our definition corresponds to n(z)=-n*(-z), the complex refractive index antisymmetry along propagation axis, and when being cast back to quantum mechanical side, corresponds to V (x, t)=-V*(x,-t), the conjugate time-reversal antisymmetry of complex potential. We define this as the pseudoPT-antisymmetry, and prove the reason for this phenomenon to be the quantum-mechanical nature described by master equation under weak field approximation for any configuration of 1D atomic lattices. This work will help to deepen the understanding of origin of optical response features of atomic lattices, and will certainly open up the gate to a more rigorous, durable and flexible method of atomic optical lattice design. 展开更多
关键词 pseudo-PT-antisymmetry conjugate time-reversal antisymmetry zigzag-type atom configuration
原文传递
Photon Can Be Described as the Normalized Mutual Energy Flow
20
作者 Shuang-Ren Zhao 《Journal of Modern Physics》 2020年第5期668-682,共15页
Einstein guessed that the macroscopic electromagnetic wave is built by thousands of photons, however, no one has offered a theory about how the macroscopic electromagnetic wave is built from photons. A concrete theory... Einstein guessed that the macroscopic electromagnetic wave is built by thousands of photons, however, no one has offered a theory about how the macroscopic electromagnetic wave is built from photons. A concrete theory about photons is needed to answer this question. Current theory for photons is Maxwell’s equation which has the solution of waves, but it is difficult to describe the photon as a particle. There is the paradox problem of wave-particle duality. This article offers one solution to solve this problem by introducing the normalized mutual energy flow. The interaction of the retarded wave and advanced wave produce the mutual energy flow. The mutual energy flow satisfies the mutual energy flow theorem. The mutual energy flow theorem tells us that the energy that goes through each surface between the emitter and the absorber is all same. That means the mutual energy flow is different in comparison to the waves. The wave, for example, the retarded wave, its amplitude is decreased with the distance from the source to the point of the field. The mutual energy flow does not decrease. The author noticed this and claimed that the photon is the mutual energy flow. In this article the author updated this claim that the photon is the normalized mutual energy flow. Here the normalization of mutual energy flow will normalize the mutual energy flow to the energy of a photon, which is E = hf. E is the energy of the photon;h is Planck constant;f is the frequency of the light. This normalization is similar to the normalization in quantum mechanics. After this normalization the relation between an electromagnetic wave and photon as a particle becomes clear. This article will prove that the macroscopic wave of an electromagnetic field can be built by thousands of normalized mutual energy flows, which describes the photons. The mutual energy flow is an interaction of the retarded wave and the advanced wave. The retarded wave and the advanced wave satisfy the Maxwell equations. There are two additional waves which are the time-reversal waves which satisfy time-reversal Maxwell equations. The advanced wave and the two time-reversal waves are all real and physical electromagnetic fields. The time-reversal waves cancel all self-energy flows of the retarded wave and advanced wave. Hence, the waves do not carry any energy, the energy is only transferred by the normalized mutual energy flows which are the photons. Hence, all energy is transferred by the photon instead of waves. This offers a solution to paradox of the duality of wave-particle. 展开更多
关键词 Advanced WAVE Retarded WAVE time-reversAL WAVE PHOTON Mutual En-ergy Energy Flow Electromagnetic FIELDS NORMALIZATION Wave-Particle DUALITY Electron Quantum
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部