This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is math...This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is mathematically transforming the machine model to a virtual frame with a position-offset. The virtual frame temperature estimation model is derived to calculate the permanent magnet temperature(PMT) directly from the measurements with computation efficiency. The estimation model involves a combined inductance term, which can simplify the establishment of saturation compensation model with less measurements. Moreover, resistance and inverter distorted terms are cancelled in the estimation model, which can improve the robustness to the winding temperature rise and inverter distortion. The proposed approach can achieve simplified computation in temperature estimation and reduced memory usage in saturation compensation. While existing model-based approaches could be affected by either the need of resistance and inverter information or complex saturation compensation. Experiments are conducted on the test machine to verify the proposed approach under various operating conditions.展开更多
The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new meth...The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new method for estimating ultrasonic attenuation using a spectral ratio based on an S transform(SR-ST)is presented to improve the stability and accuracy of Q estimation.The variable window of ST is used to solve the time window problem.We add two window factors to the Gaussian window function in the ST.The window factors can adjust the scale of the Gaussian window function to the ultrasonic signal,which reduces the calculation error attributed to the conventional Gaussian window function.Meanwhile,the frequency bandwidth selection rules for the linear regression of the amplitude ratio are given to further improve stability and accuracy.First,the feasibility and influencing factors of the SR-ST method are studied through numerical testing and standard sample experiments.Second,artificial samples with different Q values are used to study the adaptability and stability of the SR-ST method.Finally,a further comparison between the new method and the conventional spectral ratio method(SR)is conducted using rock field samples,again addressing stability and accuracy.The experimental results show that this method will yield an error of approximately 36%using the conventional Gaussian window function.This problem can be solved by adding the time window factors to the Gaussian window function.The frequency bandwidth selection rules and mean slope value of the amplitude ratio used in the SR-ST method can ensure that the maximum error of different Q values estimation(Q>15)is less than 10%.展开更多
This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution o...This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.展开更多
The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seism...The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.展开更多
In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research...In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.展开更多
Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) sys...Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.展开更多
An efficient scheme of integer frequency offset estimate for orthogonal frequency division multiplexing (OFDM) systems is proposed based on a training symbol with several identicalparts. In this scheme, the received...An efficient scheme of integer frequency offset estimate for orthogonal frequency division multiplexing (OFDM) systems is proposed based on a training symbol with several identicalparts. In this scheme, the received training symbol is first reshaped into several sub-symbols.It shows that the reshaping process in-troduees time diversity multiplexing.After a special fast Fourier transform (FFT) algorithm is applied to the sub-symbol,the integer frequency is estimated by finding the maximum magnitude of the resulting fre-quency domain signal.To improve the estimate performance,diversity combining methods are presented to makefull use of the multiple frequency domain sub-symbols.Compared to the traditional scheme, theproposed one has an improved estimate performance demonstrated by the computation simulation, while maintaining a very low complexity.展开更多
The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while...The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while the receive antennas are still centralized, and the general case where both the time delays and the frequency offsets are possibly different for each transmit antenna is considered. The channel is supposed to be frequency flat, and the macroscopic fading is also taken into consideration. A carrier frequency offset estimator based on Maximum Likelihood (ML) is proposed, which can separately estimate the frequency offset for each transmit antenna and exploit the spatial diversity. The Cramer-Rao Bound (CRB) for synchronous MIMO (i.e., the time delays for each transmit antenna are all equal) is also derived. Simulation results are given to illustrate the per- formance of the estimator and compare it with the CRB. It is shown that the estimator can provide satisfactory frequency offset estimates and its performance is close to the CRB for the Signal-to-Noise Ratio (SNR) below 20dB.展开更多
The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency...The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency offset values and the number of OFDM symbols,a novel fractional frequency offset blind estimation scheme based on EKF for OFDM systems is conceived.The nonlinear function of the frequency offset is calculated by employing the correlation.And then the frequency offset is estimated by means of the iterative algorithm of EKF.The finally fractional frequency offset is estimated by adopting repeated the above process.Simulation results demonstrate that the proposed scheme is robust to the frequency offset values without any requirements of a prior knowledge.展开更多
An algorithm for carrier frequency offset estimation with narrowband interference in burstmode transmissions is proposed.The algorithm is data-aided and has a feedforward structure that can be easily implemented digit...An algorithm for carrier frequency offset estimation with narrowband interference in burstmode transmissions is proposed.The algorithm is data-aided and has a feedforward structure that can be easily implemented digitally.The principle of the algorithm is based on a properly designed training sequence and an interpolation technique.Simulation results indicate that the estimation range is about ±20% of the symbol rate.The performance is satisfactory for a signal-to-noise ratio(SNR)as low as -13 dB and the mean square error(MSE)is approximately irrelevant to signal-to-interference ratio(SIR)values over -20 dB.展开更多
The symbiotic FM radio data system(SRDS)is a radio data system that a specially designed OFDM signal co-lives with FM signal,which enables a significantly higher data rate than existing radio data systems.The cyclic p...The symbiotic FM radio data system(SRDS)is a radio data system that a specially designed OFDM signal co-lives with FM signal,which enables a significantly higher data rate than existing radio data systems.The cyclic prefix of the OFDM symbol has the same length as the OFDM body,which enables the analytic separation of the co-channel OFDM and FM signal at receiver side,utilizing the fact that the OFDM body and prefix is equal.In this work,we show that the OFDM body and prefix cannot be viewed as equal when there is sufficient carrier frequency offset(CFO).Thus,we propose a two-step CFO estimation algorithm for FM and SRDS hybrid signal.The first step estimates the coarse CFO by exploring the characteristics of the FM signal.Once the coarse CFO is removed,the residual CFO is small enough for FM and OFDM separation.The second step fine estimates CFO from the OFDM-only signal using its repeated PN structure after the separation.Detailed mathematical equations are formulated and simulation results are given.The results show that the proposed algorithm works fine with the simulation setup and has a final residual CFO less than 3.9Hz.展开更多
An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is di...An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is divided into several scales to accelerate the adaptive convergence speed and ensure the estimation accuracy. The true phase offset is estimated through shrinking the detection range and raising the resolution scale step by step. Both the convergence performance and complexity are discussed in the paper. Simulation results show the effectiveness of the proposed algorithm. The LC-POE algorithm is promising in the application of OFDM systems.展开更多
A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless com...A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel model has small variations.展开更多
In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink svstems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple ...In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink svstems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple access interference (MAI) will deteriorate the frequency offset estimation performances, especially in interleaved OFDMA system. Analysis and simulation results manifest that frequency offset estimation by Moose scheme in block OFDMA system is more robust than that in interleaved OFDMA systern. And an iterative interference cancellation method has been proposed to suppress the differential MAI interference for interleaved OFDMA system, in which Moose scheme is the special case of the number of iteration is equal to one. Simulation results demonstrate that the proposed method can improve the performance with the increase of the number of iterations. In consideration of the performance and complexity, the proposed method with two iterations is selected. And the full comparison results of the proposed iterative method with two iterations and that with one iteration (conventional Moose scheme) are given in the paper, which sufficiently demonstrate that the performance gain can be obtained by the interference cancellation operation in interleaved OFDMA system.展开更多
A new fine carrier frequency offset estimation algorithm in Orthogonal Frequency Division Multiplexing (OFDM) system is proposed. The correlation item is the training sequence instead of the received signal in the new...A new fine carrier frequency offset estimation algorithm in Orthogonal Frequency Division Multiplexing (OFDM) system is proposed. The correlation item is the training sequence instead of the received signal in the new algorithm. Simulation results show that the performance of the new algo- rithm is 4dB-9dB better than that of Schmidl's algorithm. Coarse frequency offset estimation is also discussed in this paper, which is the improvement of Zhang's method. The estimation range using the improvement method is twice as that using the Zhang's method. Based on the hardware of the receiver and the improved algorithm, a method using Fast Fourier Transform (FFT) is proposed to implement the coarse frequency estimation. The chip area of OFDM system can be reduced by using the proposed method.展开更多
This paper develops a Cyclic Prefix(CP)based joint Maximum-Likelihood(ML)estima-tion algorithm of Carrier Frequency Offset(CFO)and Power Delay Profile(PDP)for Multi-InputMulti-Output Orthogonal Frequency Division Mult...This paper develops a Cyclic Prefix(CP)based joint Maximum-Likelihood(ML)estima-tion algorithm of Carrier Frequency Offset(CFO)and Power Delay Profile(PDP)for Multi-InputMulti-Output Orthogonal Frequency Division Multiplexing(MIMO-OFDM)systems.However,theexact solution of the joint ML estimation is very complex since it needs a search over amulti-dimensional domain.Thus a simplified method is proposed to estimate the CFO and the PDPiteratively via the alternating-projection method which could induce the multidimensional searchproblem to a sequence of simple one-dimensional searches.Simulations show that the proposed algo-rithm is more accurate and robust than the existing algorithms.展开更多
In the fifth-generation new radio(5G-NR) high-speed railway(HSR) downlink,a deep learning(DL) based Doppler frequency offset(DFO) estimation scheme is proposed by using the back propagation neural network(BPNN).The pr...In the fifth-generation new radio(5G-NR) high-speed railway(HSR) downlink,a deep learning(DL) based Doppler frequency offset(DFO) estimation scheme is proposed by using the back propagation neural network(BPNN).The proposed method mainly includes pre-training,training,and estimation phases,where the pre-training and training belong to the off-line stage,and the estimation is the online stage.To reduce the performance loss caused by the random initialization,the pre-training method is employed to acquire a desirable initialization,which is used as the initial parameters of the training phase.Moreover,the initial DFO estimation is used as input along with the received pilots to further improve the estimation accuracy.Different from the training phase,the initial DFO estimation in pre-training phase is obtained by the data and pilot symbols.Simulation results show that the mean squared error(MSE) performance of the proposed method is better than those of the available algorithms,and it has acceptable computational complexity.展开更多
The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a m...The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.展开更多
Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics...Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics,making the detection and estimation of LPI radar signals extremely difficult,and leading to highly required significant research on perception technology in the battlefield environment.This paper proposes a visibility graphs(VG)-based multicomponent signals detection method and a modulation waveforms parameter estimation algorithm based on the time-frequency representation(TFR).On the one hand,the frequency domain VG is used to set the dynamic threshold for detecting the multicomponent LPI radar waveforms.On the other hand,the signal is projected into the time and frequency domains by the TFR method for estimating its symbol width and instantaneous frequency(IF).Simulation performance shows that,compared with the most advanced methods,the algorithm proposed in this paper has a valuable advantage.Meanwhile,the calculation cost of the algorithm is quite low,and it is achievable in the future battlefield.展开更多
Filter-bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) is a candidate waveform for future wireless communications due to its advantages over orthogonal frequency division multiplexing ...Filter-bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) is a candidate waveform for future wireless communications due to its advantages over orthogonal frequency division multiplexing (OFDM) systems. However, because of or-thogonality in real field and the presence of imaginary intrinsic interference, channel estimation in FBMC is not as straightforward as OFDM systems especially in multiple antenna scenarios. In this paper, we propose a channel estimation method which employs intrinsic interference cancellation at the transmitter side. The simulation results show that this method has less pilot overhead, less peak to average power ratio (PAPR), better bit error rate (BER), and better mean square error (MSE) performance compared to the well-known intrinsic approximation methods (IAM).展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 52105079 and 62103455。
文摘This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is mathematically transforming the machine model to a virtual frame with a position-offset. The virtual frame temperature estimation model is derived to calculate the permanent magnet temperature(PMT) directly from the measurements with computation efficiency. The estimation model involves a combined inductance term, which can simplify the establishment of saturation compensation model with less measurements. Moreover, resistance and inverter distorted terms are cancelled in the estimation model, which can improve the robustness to the winding temperature rise and inverter distortion. The proposed approach can achieve simplified computation in temperature estimation and reduced memory usage in saturation compensation. While existing model-based approaches could be affected by either the need of resistance and inverter information or complex saturation compensation. Experiments are conducted on the test machine to verify the proposed approach under various operating conditions.
基金supported by the Special Fund of the Institute of Geophysics,China Earthquake Administration(Nos.DQJB19B02 and DQJB17T04)
文摘The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new method for estimating ultrasonic attenuation using a spectral ratio based on an S transform(SR-ST)is presented to improve the stability and accuracy of Q estimation.The variable window of ST is used to solve the time window problem.We add two window factors to the Gaussian window function in the ST.The window factors can adjust the scale of the Gaussian window function to the ultrasonic signal,which reduces the calculation error attributed to the conventional Gaussian window function.Meanwhile,the frequency bandwidth selection rules for the linear regression of the amplitude ratio are given to further improve stability and accuracy.First,the feasibility and influencing factors of the SR-ST method are studied through numerical testing and standard sample experiments.Second,artificial samples with different Q values are used to study the adaptability and stability of the SR-ST method.Finally,a further comparison between the new method and the conventional spectral ratio method(SR)is conducted using rock field samples,again addressing stability and accuracy.The experimental results show that this method will yield an error of approximately 36%using the conventional Gaussian window function.This problem can be solved by adding the time window factors to the Gaussian window function.The frequency bandwidth selection rules and mean slope value of the amplitude ratio used in the SR-ST method can ensure that the maximum error of different Q values estimation(Q>15)is less than 10%.
基金supported by the National Natural Science Foundation of China(611011726137118461301262)
文摘This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.
基金This work was supported by The National Key Research and Development Program(No.2016YFC0600505 and 2018YFC0603701)National Natural Science Foundation(No.41974134 and 41774127).
文摘The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.
基金supported by the National Natural Science Foundation of China under Grant No. 61501084。
文摘In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.
基金The National Natural Science Foundation of China(No.60702028)the National High Technology Research and Development Program of China(863Program)(No.2007AA01Z268)
文摘Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.
文摘An efficient scheme of integer frequency offset estimate for orthogonal frequency division multiplexing (OFDM) systems is proposed based on a training symbol with several identicalparts. In this scheme, the received training symbol is first reshaped into several sub-symbols.It shows that the reshaping process in-troduees time diversity multiplexing.After a special fast Fourier transform (FFT) algorithm is applied to the sub-symbol,the integer frequency is estimated by finding the maximum magnitude of the resulting fre-quency domain signal.To improve the estimate performance,diversity combining methods are presented to makefull use of the multiple frequency domain sub-symbols.Compared to the traditional scheme, theproposed one has an improved estimate performance demonstrated by the computation simulation, while maintaining a very low complexity.
基金the National Natural Science Foundation of China (No. 60272009, No. 60572090, No. 60472045, No. 60496313 and No. 60602009).
文摘The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while the receive antennas are still centralized, and the general case where both the time delays and the frequency offsets are possibly different for each transmit antenna is considered. The channel is supposed to be frequency flat, and the macroscopic fading is also taken into consideration. A carrier frequency offset estimator based on Maximum Likelihood (ML) is proposed, which can separately estimate the frequency offset for each transmit antenna and exploit the spatial diversity. The Cramer-Rao Bound (CRB) for synchronous MIMO (i.e., the time delays for each transmit antenna are all equal) is also derived. Simulation results are given to illustrate the per- formance of the estimator and compare it with the CRB. It is shown that the estimator can provide satisfactory frequency offset estimates and its performance is close to the CRB for the Signal-to-Noise Ratio (SNR) below 20dB.
基金supported by the National Natural Science Foundation of China under Grant No.61501348 and 61271299China Postdoctoral Science Foundation funded project under Grant No.2014M562372+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2016JQ6039the 111 Project under Grant No.B08038
文摘The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency offset values and the number of OFDM symbols,a novel fractional frequency offset blind estimation scheme based on EKF for OFDM systems is conceived.The nonlinear function of the frequency offset is calculated by employing the correlation.And then the frequency offset is estimated by means of the iterative algorithm of EKF.The finally fractional frequency offset is estimated by adopting repeated the above process.Simulation results demonstrate that the proposed scheme is robust to the frequency offset values without any requirements of a prior knowledge.
基金Supported by the National Natural Science Foundation of China(61301089)
文摘An algorithm for carrier frequency offset estimation with narrowband interference in burstmode transmissions is proposed.The algorithm is data-aided and has a feedforward structure that can be easily implemented digitally.The principle of the algorithm is based on a properly designed training sequence and an interpolation technique.Simulation results indicate that the estimation range is about ±20% of the symbol rate.The performance is satisfactory for a signal-to-noise ratio(SNR)as low as -13 dB and the mean square error(MSE)is approximately irrelevant to signal-to-interference ratio(SIR)values over -20 dB.
基金supported by the National Natural Science Foundation of China (Grant No.61671264)Basic scientific research project of Beijing University of Posts and Telecommunications (Grant No. 2019RC02)National Key R&D Program of China(Grant No.2018YFE0101000)
文摘The symbiotic FM radio data system(SRDS)is a radio data system that a specially designed OFDM signal co-lives with FM signal,which enables a significantly higher data rate than existing radio data systems.The cyclic prefix of the OFDM symbol has the same length as the OFDM body,which enables the analytic separation of the co-channel OFDM and FM signal at receiver side,utilizing the fact that the OFDM body and prefix is equal.In this work,we show that the OFDM body and prefix cannot be viewed as equal when there is sufficient carrier frequency offset(CFO).Thus,we propose a two-step CFO estimation algorithm for FM and SRDS hybrid signal.The first step estimates the coarse CFO by exploring the characteristics of the FM signal.Once the coarse CFO is removed,the residual CFO is small enough for FM and OFDM separation.The second step fine estimates CFO from the OFDM-only signal using its repeated PN structure after the separation.Detailed mathematical equations are formulated and simulation results are given.The results show that the proposed algorithm works fine with the simulation setup and has a final residual CFO less than 3.9Hz.
基金supported by the National Natural Science Foundation of China (60972072)the National Science and Technology Major Projects: the New Generation Broadband Wireless Mobile Communication Network (2009ZX03003-03)the "111 Project" of China (B08038)
文摘An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is divided into several scales to accelerate the adaptive convergence speed and ensure the estimation accuracy. The true phase offset is estimated through shrinking the detection range and raising the resolution scale step by step. Both the convergence performance and complexity are discussed in the paper. Simulation results show the effectiveness of the proposed algorithm. The LC-POE algorithm is promising in the application of OFDM systems.
基金Project supported by the National Natural Science Foundation of China (Grant No.60572157)the International Cooper-ation Foundation (Grant No.2008DFA11950)
文摘A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel model has small variations.
文摘In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink svstems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple access interference (MAI) will deteriorate the frequency offset estimation performances, especially in interleaved OFDMA system. Analysis and simulation results manifest that frequency offset estimation by Moose scheme in block OFDMA system is more robust than that in interleaved OFDMA systern. And an iterative interference cancellation method has been proposed to suppress the differential MAI interference for interleaved OFDMA system, in which Moose scheme is the special case of the number of iteration is equal to one. Simulation results demonstrate that the proposed method can improve the performance with the increase of the number of iterations. In consideration of the performance and complexity, the proposed method with two iterations is selected. And the full comparison results of the proposed iterative method with two iterations and that with one iteration (conventional Moose scheme) are given in the paper, which sufficiently demonstrate that the performance gain can be obtained by the interference cancellation operation in interleaved OFDMA system.
文摘A new fine carrier frequency offset estimation algorithm in Orthogonal Frequency Division Multiplexing (OFDM) system is proposed. The correlation item is the training sequence instead of the received signal in the new algorithm. Simulation results show that the performance of the new algo- rithm is 4dB-9dB better than that of Schmidl's algorithm. Coarse frequency offset estimation is also discussed in this paper, which is the improvement of Zhang's method. The estimation range using the improvement method is twice as that using the Zhang's method. Based on the hardware of the receiver and the improved algorithm, a method using Fast Fourier Transform (FFT) is proposed to implement the coarse frequency estimation. The chip area of OFDM system can be reduced by using the proposed method.
基金the National Natural Science Foundation of China(No.60496311).
文摘This paper develops a Cyclic Prefix(CP)based joint Maximum-Likelihood(ML)estima-tion algorithm of Carrier Frequency Offset(CFO)and Power Delay Profile(PDP)for Multi-InputMulti-Output Orthogonal Frequency Division Multiplexing(MIMO-OFDM)systems.However,theexact solution of the joint ML estimation is very complex since it needs a search over amulti-dimensional domain.Thus a simplified method is proposed to estimate the CFO and the PDPiteratively via the alternating-projection method which could induce the multidimensional searchproblem to a sequence of simple one-dimensional searches.Simulations show that the proposed algo-rithm is more accurate and robust than the existing algorithms.
基金Supported by the National Science Foundation Program of Jiangsu Province(No.BK20191378)the National Science Research Project of Jiangsu Higher Education Institutions(No.18KJB510034)+1 种基金the 11th Batch of China Postdoctoral Science Fund Special Funding Project(No.2018T110530)the National Natural Science Foundation of China(No.61771255)。
文摘In the fifth-generation new radio(5G-NR) high-speed railway(HSR) downlink,a deep learning(DL) based Doppler frequency offset(DFO) estimation scheme is proposed by using the back propagation neural network(BPNN).The proposed method mainly includes pre-training,training,and estimation phases,where the pre-training and training belong to the off-line stage,and the estimation is the online stage.To reduce the performance loss caused by the random initialization,the pre-training method is employed to acquire a desirable initialization,which is used as the initial parameters of the training phase.Moreover,the initial DFO estimation is used as input along with the received pilots to further improve the estimation accuracy.Different from the training phase,the initial DFO estimation in pre-training phase is obtained by the data and pilot symbols.Simulation results show that the mean squared error(MSE) performance of the proposed method is better than those of the available algorithms,and it has acceptable computational complexity.
基金supported by The National Key Research and Development Program Plane(No.2017YFC0601505)National Natural Science Foundation(No.41672325)Science&Technology Department of Sichuan Province Technology Project(No.2017GZ0393)
文摘The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.
基金supported by the National Defence Pre-research Foundation of China(30502010103).
文摘Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics,making the detection and estimation of LPI radar signals extremely difficult,and leading to highly required significant research on perception technology in the battlefield environment.This paper proposes a visibility graphs(VG)-based multicomponent signals detection method and a modulation waveforms parameter estimation algorithm based on the time-frequency representation(TFR).On the one hand,the frequency domain VG is used to set the dynamic threshold for detecting the multicomponent LPI radar waveforms.On the other hand,the signal is projected into the time and frequency domains by the TFR method for estimating its symbol width and instantaneous frequency(IF).Simulation performance shows that,compared with the most advanced methods,the algorithm proposed in this paper has a valuable advantage.Meanwhile,the calculation cost of the algorithm is quite low,and it is achievable in the future battlefield.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.Surrey-Ref-9953
文摘Filter-bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) is a candidate waveform for future wireless communications due to its advantages over orthogonal frequency division multiplexing (OFDM) systems. However, because of or-thogonality in real field and the presence of imaginary intrinsic interference, channel estimation in FBMC is not as straightforward as OFDM systems especially in multiple antenna scenarios. In this paper, we propose a channel estimation method which employs intrinsic interference cancellation at the transmitter side. The simulation results show that this method has less pilot overhead, less peak to average power ratio (PAPR), better bit error rate (BER), and better mean square error (MSE) performance compared to the well-known intrinsic approximation methods (IAM).