期刊文献+
共找到155,001篇文章
< 1 2 250 >
每页显示 20 50 100
Intelligent recognition and information extraction of radar complex jamming based on time-frequency features
1
作者 PENG Ruihui WU Xingrui +3 位作者 WANG Guohong SUN Dianxing YANG Zhong LI Hongwen 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1148-1166,共19页
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p... In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results. 展开更多
关键词 complex jamming recognition time frequency feature convolutional neural network(CNN) parameter estimation
在线阅读 下载PDF
A reliability-oriented genetic algorithm-levenberg marquardt model for leak risk assessment based on time-frequency features
2
作者 Ying-Ying Wang Hai-Bo Sun +4 位作者 Jin Yang Shi-De Wu Wen-Ming Wang Yu-Qi Li Ze-Qing Lin 《Petroleum Science》 SCIE EI CSCD 2023年第5期3194-3209,共16页
Since leaks in high-pressure pipelines transporting crude oil can cause severe economic losses,a reliable leak risk assessment can assist in developing an effective pipeline maintenance plan and avoiding unexpected in... Since leaks in high-pressure pipelines transporting crude oil can cause severe economic losses,a reliable leak risk assessment can assist in developing an effective pipeline maintenance plan and avoiding unexpected incidents.The fast and accurate leak detection methods are essential for maintaining pipeline safety in pipeline reliability engineering.Current oil pipeline leakage signals are insufficient for feature extraction,while the training time for traditional leakage prediction models is too long.A new leak detection method is proposed based on time-frequency features and the Genetic Algorithm-Levenberg Marquardt(GA-LM)classification model for predicting the leakage status of oil pipelines.The signal that has been processed is transformed to the time and frequency domain,allowing full expression of the original signal.The traditional Back Propagation(BP)neural network is optimized by the Genetic Algorithm(GA)and Levenberg Marquardt(LM)algorithms.The results show that the recognition effect of a combined feature parameter is superior to that of a single feature parameter.The Accuracy,Precision,Recall,and F1score of the GA-LM model is 95%,93.5%,96.7%,and 95.1%,respectively,which proves that the GA-LM model has a good predictive effect and excellent stability for positive and negative samples.The proposed GA-LM model can obviously reduce training time and improve recognition efficiency.In addition,considering that a large number of samples are required for model training,a wavelet threshold method is proposed to generate sample data with higher reliability.The research results can provide an effective theoretical and technical reference for the leakage risk assessment of the actual oil pipelines. 展开更多
关键词 Leak risk assessment Oil pipeline GA-LM model Data derivation time-frequency features
原文传递
Digital modulation classification using multi-layer perceptron and time-frequency features
3
作者 Yuan Ye Mei Wenbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期249-254,共6页
Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributio... Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier. 展开更多
关键词 Digital modulation classification time-frequency feature time-frequency distribution Multi-layer perceptron.
在线阅读 下载PDF
Few-shot anomaly detection with adaptive feature transformation and descriptor construction 被引量:1
4
作者 Zhengnan HU Xiangrui ZENG +4 位作者 Yiqun LI Zhouping YIN Erli MENG Leyan ZHU Xianghao KONG 《Chinese Journal of Aeronautics》 2025年第3期491-504,共14页
Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which ... Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which require strict part qualification rates. Although being more efficient and practical, few-shot AD has not been well explored. The existing AD methods only extract features in a single frequency while defects exist in multiple frequency domains. Moreover, current methods have not fully leveraged the few-shot support samples to extract input-related normal patterns. To address these issues, we propose an industrial few-shot AD method, Feature Extender for Anomaly Detection (FEAD), which extracts normal patterns in multiple frequency domains from few-shot samples under the guidance of the input sample. Firstly, to achieve better coverage of normal patterns in the input sample, we introduce a Sample-Conditioned Transformation Module (SCTM), which transforms support features under the guidance of the input sample to obtain extra normal patterns. Secondly, to effectively distinguish and localize anomaly patterns in multiple frequency domains, we devise an Adaptive Descriptor Construction Module (ADCM) to build and select pattern descriptors in a series of frequencies adaptively. Finally, an auxiliary task for SCTM is designed to ensure the diversity of transformations and include more normal patterns into support features. Extensive experiments on two widely used industrial AD datasets (MVTec-AD and VisA) demonstrate the effectiveness of the proposed FEAD. 展开更多
关键词 Industrial applications Anomaly detection Learning algorithms feature extraction feature selection
原文传递
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
5
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Correction:A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion
6
作者 Khadija Manzoor Fiaz Majeed +5 位作者 Ansar Siddique Talha Meraj Hafiz Tayyab Rauf Mohammed A.El-Meligy Mohamed Sharaf Abd Elatty E.Abd Elgawad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1459-1459,共1页
In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Ela... In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Elatty E.Abd Elgawad Computers,Materials&Continua,2022,Vol.70,No.1,pp.1617–1630.DOI:10.32604/cmc.2022.018621,URL:https://www.techscience.com/cmc/v70n1/44361,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”. 展开更多
关键词 FUSION SKIN feature
在线阅读 下载PDF
Effects of feature selection and normalization on network intrusion detection 被引量:1
7
作者 Mubarak Albarka Umar Zhanfang Chen +1 位作者 Khaled Shuaib Yan Liu 《Data Science and Management》 2025年第1期23-39,共17页
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e... The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates. 展开更多
关键词 CYBERSECURITY Intrusion detection system Machine learning Deep learning feature selection NORMALIZATION
在线阅读 下载PDF
A Lightweight Multiscale Feature Fusion Network for Solar Cell Defect Detection
8
作者 Xiaoyun Chen Lanyao Zhang +3 位作者 Xiaoling Chen Yigang Cen Linna Zhang Fugui Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期521-542,共22页
Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules.In the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it cha... Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules.In the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it challenging to collect defective samples.Additionally,the complex surface background of polysilicon cell wafers complicates the accurate identification and localization of defective regions.This paper proposes a novel Lightweight Multiscale Feature Fusion network(LMFF)to address these challenges.The network comprises a feature extraction network,a multi-scale feature fusion module(MFF),and a segmentation network.Specifically,a feature extraction network is proposed to obtain multi-scale feature outputs,and a multi-scale feature fusion module(MFF)is used to fuse multi-scale feature information effectively.In order to capture finer-grained multi-scale information from the fusion features,we propose a multi-scale attention module(MSA)in the segmentation network to enhance the network’s ability for small target detection.Moreover,depthwise separable convolutions are introduced to construct depthwise separable residual blocks(DSR)to reduce the model’s parameter number.Finally,to validate the proposed method’s defect segmentation and localization performance,we constructed three solar cell defect detection datasets:SolarCells,SolarCells-S,and PVEL-S.SolarCells and SolarCells-S are monocrystalline silicon datasets,and PVEL-S is a polycrystalline silicon dataset.Experimental results show that the IOU of our method on these three datasets can reach 68.5%,51.0%,and 92.7%,respectively,and the F1-Score can reach 81.3%,67.5%,and 96.2%,respectively,which surpasses other commonly usedmethods and verifies the effectiveness of our LMFF network. 展开更多
关键词 Defect segmentation multi-scale feature fusion multi-scale attention depthwise separable residual block
在线阅读 下载PDF
Retrospective analysis of pathological types and imaging features in pancreatic cancer: A comprehensive study
9
作者 Yang-Gang Luo Mei Wu Hong-Guang Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期121-129,共9页
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ... BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches. 展开更多
关键词 Pancreatic cancer Pathological types Imaging features Retrospective analysis Diagnostic accuracy
暂未订购
New Features and New Challenges of U.S.-Europe Relations Under Trump 2.0 被引量:1
10
作者 Zhao Huaipu 《Contemporary World》 2025年第3期47-52,共6页
During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 202... During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 2024 presidential election of the United States has plunged the U.S.-Europe relations into more gloomy waters,ushering in a more complex and turbulent period of adjustment. 展开更多
关键词 new features turbulent period Trump U S Europe relations presidential election new challenges UNCERTAINTIES transatlantic alliance
在线阅读 下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
11
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
在线阅读 下载PDF
Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction
12
作者 Shi Li Didi Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期1069-1086,共18页
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions... With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings. 展开更多
关键词 Emotion-cause pair extraction interactive information enhancement joint feature encoding label consistency task alignment mechanisms
在线阅读 下载PDF
Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis
13
作者 Tianzhi Zhang Gang Zhou +4 位作者 Shuang Zhang Shunhang Li Yepeng Sun Qiankun Pi Shuo Liu 《Computers, Materials & Continua》 SCIE EI 2025年第1期279-305,共27页
Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo... Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods. 展开更多
关键词 Multimodal sentiment analysis aspect-based sentiment analysis feature fine-grained learning graph convolutional network adjective-noun pairs
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
14
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
DMHFR:Decoder with Multi-Head Feature Receptors for Tract Image Segmentation
15
作者 Jianuo Huang Bohan Lai +2 位作者 Weiye Qiu Caixu Xu Jie He 《Computers, Materials & Continua》 2025年第3期4841-4862,共22页
The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships ... The self-attention mechanism of Transformers,which captures long-range contextual information,has demonstrated significant potential in image segmentation.However,their ability to learn local,contextual relationships between pixels requires further improvement.Previous methods face challenges in efficiently managing multi-scale fea-tures of different granularities from the encoder backbone,leaving room for improvement in their global representation and feature extraction capabilities.To address these challenges,we propose a novel Decoder with Multi-Head Feature Receptors(DMHFR),which receives multi-scale features from the encoder backbone and organizes them into three feature groups with different granularities:coarse,fine-grained,and full set.These groups are subsequently processed by Multi-Head Feature Receptors(MHFRs)after feature capture and modeling operations.MHFRs include two Three-Head Feature Receptors(THFRs)and one Four-Head Feature Receptor(FHFR).Each group of features is passed through these MHFRs and then fed into axial transformers,which help the model capture long-range dependencies within the features.The three MHFRs produce three distinct feature outputs.The output from the FHFR serves as auxiliary auxiliary features in the prediction head,and the prediction output and their losses will eventually be aggregated.Experimental results show that the Transformer using DMHFR outperforms 15 state of the arts(SOTA)methods on five public datasets.Specifically,it achieved significant improvements in mean DICE scores over the classic Parallel Reverse Attention Network(PraNet)method,with gains of 4.1%,2.2%,1.4%,8.9%,and 16.3%on the CVC-ClinicDB,Kvasir-SEG,CVC-T,CVC-ColonDB,and ETIS-LaribPolypDB datasets,respectively. 展开更多
关键词 Medical image segmentation feature exploration feature aggregation deep learning multi-head feature receptor
在线阅读 下载PDF
AMSFuse:Adaptive Multi-Scale Feature Fusion Network for Diabetic Retinopathy Classification
16
作者 Chengzhang Zhu Ahmed Alasri +5 位作者 Tao Xu Yalong Xiao Abdulrahman Noman Raeed Alsabri Xuanchu Duan Monir Abdullah 《Computers, Materials & Continua》 2025年第3期5153-5167,共15页
Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure p... Globally,diabetic retinopathy(DR)is the primary cause of blindness,affecting millions of people worldwide.This widespread impact underscores the critical need for reliable and precise diagnostic techniques to ensure prompt diagnosis and effective treatment.Deep learning-based automated diagnosis for diabetic retinopathy can facilitate early detection and treatment.However,traditional deep learning models that focus on local views often learn feature representations that are less discriminative at the semantic level.On the other hand,models that focus on global semantic-level information might overlook critical,subtle local pathological features.To address this issue,we propose an adaptive multi-scale feature fusion network called(AMSFuse),which can adaptively combine multi-scale global and local features without compromising their individual representation.Specifically,our model incorporates global features for extracting high-level contextual information from retinal images.Concurrently,local features capture fine-grained details,such as microaneurysms,hemorrhages,and exudates,which are critical for DR diagnosis.These global and local features are adaptively fused using a fusion block,followed by an Integrated Attention Mechanism(IAM)that refines the fused features by emphasizing relevant regions,thereby enhancing classification accuracy for DR classification.Our model achieves 86.3%accuracy on the APTOS dataset and 96.6%RFMiD,both of which are comparable to state-of-the-art methods. 展开更多
关键词 Diabetic retinopathy multi-scale feature fusion global features local features integrated attention mechanism retinal images
暂未订购
Block-gram:Mining knowledgeable features for efficiently smart contract vulnerability detection
17
作者 Xueshuo Xie Haolong Wang +3 位作者 Zhaolong Jian Yaozheng Fang Zichun Wang Tao Li 《Digital Communications and Networks》 2025年第1期1-12,共12页
Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attack... Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attacks on smart contracts often cause huge economic losses.Since it is difficult to repair and update smart contracts,it is necessary to find the vulnerabilities before they are deployed.However,code analysis,which requires traversal paths,and learning methods,which require many features to be trained,are too time-consuming to detect large-scale on-chain contracts.Learning-based methods will obtain detection models from a feature space compared to code analysis methods such as symbol execution.But the existing features lack the interpretability of the detection results and training model,even worse,the large-scale feature space also affects the efficiency of detection.This paper focuses on improving the detection efficiency by reducing the dimension of the features,combined with expert knowledge.In this paper,a feature extraction model Block-gram is proposed to form low-dimensional knowledge-based features from bytecode.First,the metadata is separated and the runtime code is converted into a sequence of opcodes,which are divided into segments based on some instructions(jumps,etc.).Then,scalable Block-gram features,including 4-dimensional block features and 8-dimensional attribute features,are mined for the learning-based model training.Finally,feature contributions are calculated from SHAP values to measure the relationship between our features and the results of the detection model.In addition,six types of vulnerability labels are made on a dataset containing 33,885 contracts,and these knowledge-based features are evaluated using seven state-of-the-art learning algorithms,which show that the average detection latency speeds up 25×to 650×,compared with the features extracted by N-gram,and also can enhance the interpretability of the detection model. 展开更多
关键词 Smart contract Bytecode&opcode Knowledgeable features Vulnerability detection feature contribution
在线阅读 下载PDF
BLFM-Net:An Efficient Regional Feature Matching Method for Bronchoscopic Surgery Based on Deep Learning Object Detection
18
作者 He Su Jianwei Gao Kang Kong 《Computers, Materials & Continua》 2025年第6期4193-4213,共21页
Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries.This study purposes a bronchoscopic lumen feature matching network(BLFM-Net)based on deep learning to address the ... Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries.This study purposes a bronchoscopic lumen feature matching network(BLFM-Net)based on deep learning to address the challenges of image noise,anatomical complexity,and the stringent real-time requirements.The BLFM-Net enhances bronchoscopic image processing by integrating several functional modules.The FFA-Net preprocessing module mitigates image fogging and improves visual clarity for subsequent processing.The feature extraction module derives multi-dimensional features,such as centroids,area,and shape descriptors,from dehazed images.The Faster RCNN Object detection module detects bronchial regions of interest and generates bounding boxes to localize key areas.The feature matching module accelerates the process by combining detection boxes,extracted features,and a KD-Tree(K-Dimensional Tree)-based algorithm,ensuring efficient and accurate regional feature associations.The BLFM-Net was evaluated on 5212 bronchoscopic images,demonstrating superior performance compared to traditional and other deep learning-based image matching methods.It achieved real-time matching with an average frame time of 6 ms,with a matching accuracy of over 96%.The method remained robust under challenging conditions including frame dropping(0,5,10,20),shadowed regions,and variable lighting,maintaining accuracy of above 94%even with the frame dropping of 20.This study presents BLFM-Net,a deep learning-based matching network designed to enhance and match bronchial features in bronchoscopic images.The BLFM-Net shows improved accuracy,real-time performance,and reliability,making a valuable tool for bronchoscopic surgeries. 展开更多
关键词 Bronchial region feature matching bronchoscopic tracking real-time processing bronchial texture features bronchial texture features deep learning medical image dehazing
在线阅读 下载PDF
Research on indoor positioning and navigating technology based on scale hierarchical visual image feature matching
19
作者 BIE Haoze QIN Danyang +1 位作者 YANG Jiaqiang LI Sitong 《High Technology Letters》 2025年第2期164-174,共11页
The impact of location services on people’s lives has grown significantly in the era of widespread smart device usage.Due to global navigation satellite system(GNSS)signal rejection,weak signal strength in indoor env... The impact of location services on people’s lives has grown significantly in the era of widespread smart device usage.Due to global navigation satellite system(GNSS)signal rejection,weak signal strength in indoor environments and radio signal interference caused by multiwall environments,which collectively lead to significant positioning errors,vision-based positioning has emerged as a crucial method in indoor positioning research.This paper introduces a scale hierarchical matching model to tackle challenges associated with large visual databases and high scene similarity,both of which will compromise matching accuracy and lead to prolonged positioning delays.The proposed model establishes an image feature database using GIST features and speeded up robust feature(SURF)in the offline stage.In the online stage,a positioning navigating algorithm is constructed based on Dijkstra’s path planning.Additionally,a corresponding Android application has been developed to facilitate visual positioning and navigation in indoor environments.Experimental results obtained in real indoor environments demonstrate that the proposed method significantly enhances positioning accuracy compared with similar algorithms,while effectively reducing time overhead.This improvement caters to the requirements for indoor positioning and navigation,thereby meeting user needs. 展开更多
关键词 visual feature scale hierarchy feature matching indoor positioning indoor navigation
在线阅读 下载PDF
Implicit Feature Contrastive Learning for Few-Shot Object Detection
20
作者 Gang Li Zheng Zhou +6 位作者 Yang Zhang Chuanyun Xu Zihan Ruan Pengfei Lv Ru Wang Xinyu Fan Wei Tan 《Computers, Materials & Continua》 2025年第7期1615-1632,共18页
Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world appli... Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD. 展开更多
关键词 Few-shot learning object detection implicit contrastive learning feature mixing feature aggregation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部