Objective:To systematically investigate the research status,research hotspots,and developmental trends of robotic techniques in stroke rehabilitation through bibliometric and visualization analysis.Methods:Literature ...Objective:To systematically investigate the research status,research hotspots,and developmental trends of robotic techniques in stroke rehabilitation through bibliometric and visualization analysis.Methods:Literature published in the Web of Science from 2004 to 2024 were screened.VOSviewer,CiteSpace,R Software,Microsoft Office Excel 2021,and“bibliometric.com”were employed to conduct bibliometric analysis and network visualization.Results:A total of 3,704 documents were retrieved.Northwestern University was the most productive institution.Krebs Hermano Igo was the most prolific author.The Journal of NeuroEngineering and Rehabilitation had the highest publication volume.The United States currently holds a leading position in various aspects,including the overall volume of publications,institutional contributions,author output,and funding support.Keywords such as“deep learning”“physical human-robot interaction”“wearable robotics”“mirror therapy”“telerehabilitation”“soft robotics”“augmented reality”“functional near-infrared spectroscopy,”and“impedance control”highlight the current research hotspots and frontiers.Conclusion:Rehabilitation robotics is a field with vigorous growth,progressively advancing toward intelligent,personalized,accessible,and efficient rehabilitation solutions with substantial future potential.展开更多
Objective To explore potential keywords,research clusters,collaborative pattern,and research trends in the field of medical technology management(MTM)through bibliometric analysis,providing insights for researchers,po...Objective To explore potential keywords,research clusters,collaborative pattern,and research trends in the field of medical technology management(MTM)through bibliometric analysis,providing insights for researchers,policy makers,and hospital administrators.Methods A retrieval formula was applied to the title,abstract,and keywords in the Web of Science(WoS)Core Collection,along with system-recommended terms,to identify articles on MTM.A total of 181 articles published between 1974 and 2022 were retained for quantitative analysis.The global trend of research output;total citations,average citations,and H-index;and bibliographic coupling,co-authorship,and keyword co-occurrence were analyzed using VOSviewer.Results The number of articles on MTM has been steadily increasing year by year.The focus of research has shifted from addressing basic medical needs to prioritizing emergency response and medical information security.The United States,Italy,and the United Kingdom emerged as the main contributors,with the United States leading in both volume of publications(60 articles)and academic impact(H-index=21).Authors from the United Kingdom and the United States led the way in cross-border cooperation.The top five institutions,ranked by total link strength among cross-institutional authors,were primarily located in Canada and Spain.Conclusions The field of MTM has experienced stable growth over the past three decades(1993-2022).The shift of research focus has prompted a heightened emphasis on protecting patient privacy and ensuring the security of medical data.Future research should emphasize interdisciplinary and professional collaboration,as well as international cooperation and open sharing of knowledge.展开更多
With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis o...With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.展开更多
The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
Dynamic tracking analysis of monoclonal antibodies(mAbs)biotransformation in vivo is crucial,as certain modifications could inactivate the protein and reduce drug efficacy.However,a particular challenge(i.e.immune rec...Dynamic tracking analysis of monoclonal antibodies(mAbs)biotransformation in vivo is crucial,as certain modifications could inactivate the protein and reduce drug efficacy.However,a particular challenge(i.e.immune recognition deficiencies)in biotransformation studies may arise when modifications occur at the paratope recognized by the antigen.To address this limitation,a multi-epitope affinity technology utilizing the metal organic framework(MOF)@Au@peptide@aptamer composite material was proposed and developed by simultaneously immobilizing complementarity determining region(CDR)mimotope peptide(HH24)and non-CDR mimotope aptamer(CH1S-6T)onto the surface of MOF@Au nanocomposite.Comparative studies demonstrated that MOF@Au@peptide@aptamer exhibited significantly enhanced enrichment capabilities for trastuzumab variants in comparison to mono-epitope affinity technology.Moreover,the higher deamidation ratio for LC-Asn-30 and isomerization ratio for HCAsn-55 can only be monitored by the novel bioanalytical platform based on MOF@Au@peptide@aptamer and liquid chromatography-quadrupole time of flight-mass spectrometry(LC-QTOF-MS).Therefore,multi-epitope affinity technology could effectively overcome the biases of traditional affinity materials for key sites modification analysis of mAb.Particularly,the novel bioanalytical platform can be successfully used for the tracking analysis of trastuzumab modifications in different biological fluids.Compared to the spiked phosphate buffer(PB)model,faster modification trends were monitored in the spiked serum and patients'sera due to the catalytic effect of plasma proteins and relevant proteases.Differences in peptide modification levels of trastuzumab in patients'sera were also monitored.In summary,the novel bioanalytical platform based on the multi-epitope affinity technology holds great potentials for in vivo biotransformation analysis of mAb,contributing to improved understanding and paving the way for future research and clinical applications.展开更多
With the proposal of the double carbon target,the task of energy saving and emission reduction of buildings has become more arduous.The application of building photovoltaic technology is identified as a significant br...With the proposal of the double carbon target,the task of energy saving and emission reduction of buildings has become more arduous.The application of building photovoltaic technology is identified as a significant breakthrough to address this challenge.In this paper,the visual analysis and interpretation of literature on building photovoltaic(PV)technology were conducted by using the Cite Space analysis tool based on a review of Chinese and international literature databases.Meanwhile,global research on BIPV technology was summarized and compared.This paper provides ideas for the future application of building photovoltaic technology by constructing a knowledge map for the application of building photovoltaic technology to help the construction of a low-carbon society.展开更多
This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a...This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.展开更多
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This...With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.展开更多
Frequent extreme heat events around the world not only pose a major threat to human health but also cause significant economic losses to the livestock industry.The existing management practices are insufficient to ful...Frequent extreme heat events around the world not only pose a major threat to human health but also cause significant economic losses to the livestock industry.The existing management practices are insufficient to fully prevent heat stress with an urgent need to develop preventive medicines.The aim of this study was to develop an antiheat stress Chinese herbal formula(CHF)via big data analysis techniques and to evaluate its anti-heat stress effect and mechanism of action via pharmacodynamic evaluation and network pharmacology analysis.Many anti-heat stress CHFs were collected from the Chinese National Knowledge Infrastructure(CNKI)database.Three alternative CHFs were obtained via unsupervised entropy hierarchical clustering analysis,and the most effective CHF against heat stress,Shidi Jieshu decoction(SJD),was obtained by screening in a mouse heat stress model.In dry and hot environments,SJD significantly improved the heat tolerance of AA broilers by 4-6℃.In a humid and hot environment,pretreatment with 2%SJD resulted in 100%survival of Wenchang chickens at high temperatures.The main active ingredients of SJD were identified as muntjacoside E,timosaponin C,macrostemonoside H and mangiferin via ultraperformance liquid chromatography/mass spectrometry(UPLC/MS)and database comparison.The active ingredients of SJD were found to target tumor necrosis factor-α(TNF-α),signal transducer activator of transcription 3(STAT3)and epidermal growth factor receptor(EGFR).Finally,the safety of the new formulation was assessed in an acute oral toxicity study in rats.The SJDs developed in this study provide a new option for the prevention of heat stress in animal husbandry and offer new insights for further research on anti-heat stress.展开更多
The transition of the Chinese iron and steel industry to ultralow emissions has accelerated the development of denitrification technologies.Considering the existing dual carbon targets,carbon emissions must be conside...The transition of the Chinese iron and steel industry to ultralow emissions has accelerated the development of denitrification technologies.Considering the existing dual carbon targets,carbon emissions must be considered as a critical indicator when comparing denitrification systems.Consequently,this study provided a comprehensive cost-benefit model for denitrification in the steel industry,encompassing additional carbon emissions resulting from the implementation of denitrification systems.Activated-carbon adsorption and selective catalytic reduction(SCR)systems are two efficient techniques for controlling NOx emissions during sintering.Based on thismodel,a cost-benefit analysis of these two typical systems was conducted,and the results indicated that the unit flue-gas abatement costs of SCR and activated-carbon adsorption systems were 0.00275 and 0.0126 CNY/m^(3),and the unit flue-gas abatement benefits were 0.0072 and 0.0179 CNY/m^(3),respectively.Additionally,the effect of operational characteristics on operating costs,including duration and material prices,was analyzed.When treating the flue gas,the two systems released 0.0020 and 0.0060 kg/m^(3) of carbon dioxide,respectively.The primary sources of carbon emissions from the SCR and activated-carbon adsorption systems are the production of reducing agents and system operations,respectively.Furthermore,considering the features of the activated carbon adsorption system for simultaneous desulfurization,a SCR-wet flue gas desulfurization(WFGD)technology route was developed for comparison with the activated carbon adsorption system.展开更多
Background:The integration of intelligent healthcare technologies with traditional Chinese medicine(TCM)diagnostic practices holds significant potential to address longstanding challenges in subjectivity and standardi...Background:The integration of intelligent healthcare technologies with traditional Chinese medicine(TCM)diagnostic practices holds significant potential to address longstanding challenges in subjectivity and standardization;nevertheless,a systematic analysis of research trends,technological foci,and interdisciplinary collaboration within this field remains underexplored.Methods:This study employs bibliometric analysis to examine 497 articles(2003-2025)retrieved from Web of Science,PubMed,and CNKI.Visualization tools(VOSviewer and CiteSpace)were utilized to map research evolution,collaboration networks,and thematic clusters.Results:The analysis indicates a marked upsurge in research on this topic after 2019.Key research clusters identified through bibliometric analysis encompass AI-enabled pattern recognition,neural network architectures,algorithmic classification models,digital tongue image analysis,and computational syndrome differentiation frameworks.These clusters collectively address the subjectivity and standardization challenges inherent in TCM diagnosis.Conclusion:Intelligent healthcare technologies can significantly improve the accuracy,efficiency,and reproducibility of TCM diagnostic practices.Future work should foster international collaboration and develop multi-modal,clinically validated diagnostic models.展开更多
This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital...This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital intelligence technology rapidly evolves,mainstream media organizations are increasingly leveraging AI-driven empathy algorithms to enhance audience engagement and optimize content delivery.This research employs a mixed-methods approach,combining quantitative analysis of algorithmic performance metrics with qualitative examination of media communication patterns.Through systematic review of 150 academic papers and analysis of data from 12 major media platforms,this study reveals that algorithmic empathy systems can improve emotional resonance by 34.7%and increase audience engagement by 28.3%compared to traditional communication methods.The findings demonstrate that AI algorithms reconstruct media communication logic through three primary pathways:emotional pattern recognition,personalized content curation,and real-time sentiment adaptation.However,the study also identifies significant challenges including algorithmic bias,emotional authenticity concerns,and ethical implications of automated empathy.The research contributes to understanding how mainstream media can leverage AI technology to build high-quality empathetic communication while maintaining journalistic integrity and social responsibility.展开更多
Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation ...Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation to microscopic mechanisms,remains relatively sparse.This study utilizes microscopic visualization experiments to investigate the mechanisms of residual oil mobilization under various IPC scenarios,complemented by mechanical analysis at different stages.The research quantitatively assesses the degree of microscopic oil recovery and the distribution of residual oil across different injection-production methods.Findings reveal that during the initial phase of continuous gas injection(CGI),the process closely mimics miscible displacement,gradually transitioning to immiscible displacement as CO_(2)extraction progresses.Compared to CGI,the asynchronous injection-production(AIP) method improved the microscopic oil recovery rate by 6.58%.This enhancement is mainly attributed to significant variations in the pressure field in the AIP method,which facilitate the mobilization of columnar and porous re sidual oil.Furthermo re,the synchronous cycle injection(SCI) method increased microscopic oil recovery by 13.77% and 7.19% compared to CGI and AIP,respectively.In the SCI method,membrane oil displays filame ntary and Karman vo rtex street flow patterns.The dissolved and expanded crude oil te nds to accumulate and grow at the oil-solid interface due to adhesive forces,thereby reducing migration resistance.The study findings provide a theoretical foundation for improving oil recovery in lowpermeability reservoirs.展开更多
Nonflame combustion technology (NFCT) is a harmonious energy utilization technology. There are not environmental-unfriendly gases such as NOx, CO2 discharged in the whole combustion process. Combustion processes rea...Nonflame combustion technology (NFCT) is a harmonious energy utilization technology. There are not environmental-unfriendly gases such as NOx, CO2 discharged in the whole combustion process. Combustion processes realizes zero emission through this technology. Fe2O3 is involved as oxygen carrier, is examined thermodynamically, and the thermodynamic data of the redox reactions are calculated. Using the criteria of minimizing the Gibbs free energy, the equilibrium composition was investigated. The equilibrium analysis shows that producing complete oxidized resultants must have high molar ratio of Fe2O3/CH4. If quantity of Fe2O3 is not sufficient, more partial oxidized products such as CO, H2, even C will be produced.展开更多
Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact soluti...Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.展开更多
A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequ...A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can overcome the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.展开更多
In this study,data envelopment analysis is used to measure the tourism efficiency of 31 regions in China according to the panel data from the year 2000 to 2010.The conclusion shows that the efficiency of tourism indus...In this study,data envelopment analysis is used to measure the tourism efficiency of 31 regions in China according to the panel data from the year 2000 to 2010.The conclusion shows that the efficiency of tourism industry is on the rise as a whole,while the diversity of every region becomes more and more apparent.High efficiency appears in east regions like Beijing,Tianjin and Shanghai where the economy is developed,and regions like Jilin,Sichuan and Gansu in the midland and west show low efficiency.展开更多
Oviductus Ranae is the dried oviduct of female Rana tem-poraria chensinensis (David), distributed mainly in North- eastern China. Oviductus Ranae is one of the best-known and highly valued oriental foods and medicin...Oviductus Ranae is the dried oviduct of female Rana tem-poraria chensinensis (David), distributed mainly in North- eastern China. Oviductus Ranae is one of the best-known and highly valued oriental foods and medicines. Traditional Chinese medicine holds that Oviductus Ranae can nourish yin, moisten lung and replenish the kidney essence. Meanwhile, activities of Oviductus Ranae such as anti-aging, anti-lipemic, anti-oxidation and anti-fatigue have also been demonstrated by modern phar-macological studies. Previous studies have shown that Oviductus Ranae is mainly composed of proteins, which are up to 50% or more.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
文摘Objective:To systematically investigate the research status,research hotspots,and developmental trends of robotic techniques in stroke rehabilitation through bibliometric and visualization analysis.Methods:Literature published in the Web of Science from 2004 to 2024 were screened.VOSviewer,CiteSpace,R Software,Microsoft Office Excel 2021,and“bibliometric.com”were employed to conduct bibliometric analysis and network visualization.Results:A total of 3,704 documents were retrieved.Northwestern University was the most productive institution.Krebs Hermano Igo was the most prolific author.The Journal of NeuroEngineering and Rehabilitation had the highest publication volume.The United States currently holds a leading position in various aspects,including the overall volume of publications,institutional contributions,author output,and funding support.Keywords such as“deep learning”“physical human-robot interaction”“wearable robotics”“mirror therapy”“telerehabilitation”“soft robotics”“augmented reality”“functional near-infrared spectroscopy,”and“impedance control”highlight the current research hotspots and frontiers.Conclusion:Rehabilitation robotics is a field with vigorous growth,progressively advancing toward intelligent,personalized,accessible,and efficient rehabilitation solutions with substantial future potential.
文摘Objective To explore potential keywords,research clusters,collaborative pattern,and research trends in the field of medical technology management(MTM)through bibliometric analysis,providing insights for researchers,policy makers,and hospital administrators.Methods A retrieval formula was applied to the title,abstract,and keywords in the Web of Science(WoS)Core Collection,along with system-recommended terms,to identify articles on MTM.A total of 181 articles published between 1974 and 2022 were retained for quantitative analysis.The global trend of research output;total citations,average citations,and H-index;and bibliographic coupling,co-authorship,and keyword co-occurrence were analyzed using VOSviewer.Results The number of articles on MTM has been steadily increasing year by year.The focus of research has shifted from addressing basic medical needs to prioritizing emergency response and medical information security.The United States,Italy,and the United Kingdom emerged as the main contributors,with the United States leading in both volume of publications(60 articles)and academic impact(H-index=21).Authors from the United Kingdom and the United States led the way in cross-border cooperation.The top five institutions,ranked by total link strength among cross-institutional authors,were primarily located in Canada and Spain.Conclusions The field of MTM has experienced stable growth over the past three decades(1993-2022).The shift of research focus has prompted a heightened emphasis on protecting patient privacy and ensuring the security of medical data.Future research should emphasize interdisciplinary and professional collaboration,as well as international cooperation and open sharing of knowledge.
文摘With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience.
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82373829,82273893,and 82173773)the Natural Science Foundation of Guangdong Province,China(Grant Nos.:2021A1515220099,and 2022A1515011576)+1 种基金the High-End Foreign Experts Project,China(Grant No.:G2021199005L)the Science and Technology Program of Guangdong Provincial Medical Products Administration,China(Grant Nos.:2023TDZ11,and 2022ZDB04).
文摘Dynamic tracking analysis of monoclonal antibodies(mAbs)biotransformation in vivo is crucial,as certain modifications could inactivate the protein and reduce drug efficacy.However,a particular challenge(i.e.immune recognition deficiencies)in biotransformation studies may arise when modifications occur at the paratope recognized by the antigen.To address this limitation,a multi-epitope affinity technology utilizing the metal organic framework(MOF)@Au@peptide@aptamer composite material was proposed and developed by simultaneously immobilizing complementarity determining region(CDR)mimotope peptide(HH24)and non-CDR mimotope aptamer(CH1S-6T)onto the surface of MOF@Au nanocomposite.Comparative studies demonstrated that MOF@Au@peptide@aptamer exhibited significantly enhanced enrichment capabilities for trastuzumab variants in comparison to mono-epitope affinity technology.Moreover,the higher deamidation ratio for LC-Asn-30 and isomerization ratio for HCAsn-55 can only be monitored by the novel bioanalytical platform based on MOF@Au@peptide@aptamer and liquid chromatography-quadrupole time of flight-mass spectrometry(LC-QTOF-MS).Therefore,multi-epitope affinity technology could effectively overcome the biases of traditional affinity materials for key sites modification analysis of mAb.Particularly,the novel bioanalytical platform can be successfully used for the tracking analysis of trastuzumab modifications in different biological fluids.Compared to the spiked phosphate buffer(PB)model,faster modification trends were monitored in the spiked serum and patients'sera due to the catalytic effect of plasma proteins and relevant proteases.Differences in peptide modification levels of trastuzumab in patients'sera were also monitored.In summary,the novel bioanalytical platform based on the multi-epitope affinity technology holds great potentials for in vivo biotransformation analysis of mAb,contributing to improved understanding and paving the way for future research and clinical applications.
文摘With the proposal of the double carbon target,the task of energy saving and emission reduction of buildings has become more arduous.The application of building photovoltaic technology is identified as a significant breakthrough to address this challenge.In this paper,the visual analysis and interpretation of literature on building photovoltaic(PV)technology were conducted by using the Cite Space analysis tool based on a review of Chinese and international literature databases.Meanwhile,global research on BIPV technology was summarized and compared.This paper provides ideas for the future application of building photovoltaic technology by constructing a knowledge map for the application of building photovoltaic technology to help the construction of a low-carbon society.
基金The 2023 Guangxi University Young and Middle-Aged Teachers’Scientific Research Basic Ability Improvement Project“Research on Seismic Performance of Prefabricated CFST Column-SRC Beam Composite Joints”(2023KY1204)The 2023 Guangxi Vocational Education Teaching Reform Research Project“Research and Practice on the Cultivation of Digital Talents in Prefabricated Buildings in the Context of Deepening the Integration of Industry and Education”(GXGZJG2023B052)The 2022 Guangxi Polytechnic of Construction School-Level Teaching Innovation Team Project“Prefabricated and Intelligent Teaching Innovation Team”(Gui Jian Yuan Ren[2022]No.15)。
文摘This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.
文摘With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.
基金supported by the Major Special Science and Technology Plan(202302AA310020)the National Natural Science Foundation of China(NSFC)(32072925,32473087)the National Student Innovation and Entrepreneurship Training Program of Huazhong Agricultural University(202310504018)。
文摘Frequent extreme heat events around the world not only pose a major threat to human health but also cause significant economic losses to the livestock industry.The existing management practices are insufficient to fully prevent heat stress with an urgent need to develop preventive medicines.The aim of this study was to develop an antiheat stress Chinese herbal formula(CHF)via big data analysis techniques and to evaluate its anti-heat stress effect and mechanism of action via pharmacodynamic evaluation and network pharmacology analysis.Many anti-heat stress CHFs were collected from the Chinese National Knowledge Infrastructure(CNKI)database.Three alternative CHFs were obtained via unsupervised entropy hierarchical clustering analysis,and the most effective CHF against heat stress,Shidi Jieshu decoction(SJD),was obtained by screening in a mouse heat stress model.In dry and hot environments,SJD significantly improved the heat tolerance of AA broilers by 4-6℃.In a humid and hot environment,pretreatment with 2%SJD resulted in 100%survival of Wenchang chickens at high temperatures.The main active ingredients of SJD were identified as muntjacoside E,timosaponin C,macrostemonoside H and mangiferin via ultraperformance liquid chromatography/mass spectrometry(UPLC/MS)and database comparison.The active ingredients of SJD were found to target tumor necrosis factor-α(TNF-α),signal transducer activator of transcription 3(STAT3)and epidermal growth factor receptor(EGFR).Finally,the safety of the new formulation was assessed in an acute oral toxicity study in rats.The SJDs developed in this study provide a new option for the prevention of heat stress in animal husbandry and offer new insights for further research on anti-heat stress.
基金supported by the National Key Research and Development Program of China(No.2022YFC3703403)Zhejiang Provincial“LeadWild Goose”Research and Development Project(No.2022C03073).
文摘The transition of the Chinese iron and steel industry to ultralow emissions has accelerated the development of denitrification technologies.Considering the existing dual carbon targets,carbon emissions must be considered as a critical indicator when comparing denitrification systems.Consequently,this study provided a comprehensive cost-benefit model for denitrification in the steel industry,encompassing additional carbon emissions resulting from the implementation of denitrification systems.Activated-carbon adsorption and selective catalytic reduction(SCR)systems are two efficient techniques for controlling NOx emissions during sintering.Based on thismodel,a cost-benefit analysis of these two typical systems was conducted,and the results indicated that the unit flue-gas abatement costs of SCR and activated-carbon adsorption systems were 0.00275 and 0.0126 CNY/m^(3),and the unit flue-gas abatement benefits were 0.0072 and 0.0179 CNY/m^(3),respectively.Additionally,the effect of operational characteristics on operating costs,including duration and material prices,was analyzed.When treating the flue gas,the two systems released 0.0020 and 0.0060 kg/m^(3) of carbon dioxide,respectively.The primary sources of carbon emissions from the SCR and activated-carbon adsorption systems are the production of reducing agents and system operations,respectively.Furthermore,considering the features of the activated carbon adsorption system for simultaneous desulfurization,a SCR-wet flue gas desulfurization(WFGD)technology route was developed for comparison with the activated carbon adsorption system.
基金supported by National Key R&D Program of China(2022YFC3502300)the Fundamental Research Funds for the Central public welfare research institutes(Z0876).
文摘Background:The integration of intelligent healthcare technologies with traditional Chinese medicine(TCM)diagnostic practices holds significant potential to address longstanding challenges in subjectivity and standardization;nevertheless,a systematic analysis of research trends,technological foci,and interdisciplinary collaboration within this field remains underexplored.Methods:This study employs bibliometric analysis to examine 497 articles(2003-2025)retrieved from Web of Science,PubMed,and CNKI.Visualization tools(VOSviewer and CiteSpace)were utilized to map research evolution,collaboration networks,and thematic clusters.Results:The analysis indicates a marked upsurge in research on this topic after 2019.Key research clusters identified through bibliometric analysis encompass AI-enabled pattern recognition,neural network architectures,algorithmic classification models,digital tongue image analysis,and computational syndrome differentiation frameworks.These clusters collectively address the subjectivity and standardization challenges inherent in TCM diagnosis.Conclusion:Intelligent healthcare technologies can significantly improve the accuracy,efficiency,and reproducibility of TCM diagnostic practices.Future work should foster international collaboration and develop multi-modal,clinically validated diagnostic models.
文摘This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital intelligence technology rapidly evolves,mainstream media organizations are increasingly leveraging AI-driven empathy algorithms to enhance audience engagement and optimize content delivery.This research employs a mixed-methods approach,combining quantitative analysis of algorithmic performance metrics with qualitative examination of media communication patterns.Through systematic review of 150 academic papers and analysis of data from 12 major media platforms,this study reveals that algorithmic empathy systems can improve emotional resonance by 34.7%and increase audience engagement by 28.3%compared to traditional communication methods.The findings demonstrate that AI algorithms reconstruct media communication logic through three primary pathways:emotional pattern recognition,personalized content curation,and real-time sentiment adaptation.However,the study also identifies significant challenges including algorithmic bias,emotional authenticity concerns,and ethical implications of automated empathy.The research contributes to understanding how mainstream media can leverage AI technology to build high-quality empathetic communication while maintaining journalistic integrity and social responsibility.
基金supported by the National Natural Science Foundation of China (Nos.52374064,51974347,52474072)the Shandong Provincial Universities Youth Innovation and Technology Support Program (2022KJ065)。
文摘Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation to microscopic mechanisms,remains relatively sparse.This study utilizes microscopic visualization experiments to investigate the mechanisms of residual oil mobilization under various IPC scenarios,complemented by mechanical analysis at different stages.The research quantitatively assesses the degree of microscopic oil recovery and the distribution of residual oil across different injection-production methods.Findings reveal that during the initial phase of continuous gas injection(CGI),the process closely mimics miscible displacement,gradually transitioning to immiscible displacement as CO_(2)extraction progresses.Compared to CGI,the asynchronous injection-production(AIP) method improved the microscopic oil recovery rate by 6.58%.This enhancement is mainly attributed to significant variations in the pressure field in the AIP method,which facilitate the mobilization of columnar and porous re sidual oil.Furthermo re,the synchronous cycle injection(SCI) method increased microscopic oil recovery by 13.77% and 7.19% compared to CGI and AIP,respectively.In the SCI method,membrane oil displays filame ntary and Karman vo rtex street flow patterns.The dissolved and expanded crude oil te nds to accumulate and grow at the oil-solid interface due to adhesive forces,thereby reducing migration resistance.The study findings provide a theoretical foundation for improving oil recovery in lowpermeability reservoirs.
基金Supported by the National Natural Science Foundation of China (No. 50574046, No. 50164002.) and Science & TechnologyFoundation of Baoshan Iron and Steel Co. Ltd, Natural Science Foundation of Yunnan province (No. 2004E0012Q), High SchoolDoctoral Subject Special Science and Research Foundation of Ministry of Education (NO. 20040674005)
文摘Nonflame combustion technology (NFCT) is a harmonious energy utilization technology. There are not environmental-unfriendly gases such as NOx, CO2 discharged in the whole combustion process. Combustion processes realizes zero emission through this technology. Fe2O3 is involved as oxygen carrier, is examined thermodynamically, and the thermodynamic data of the redox reactions are calculated. Using the criteria of minimizing the Gibbs free energy, the equilibrium composition was investigated. The equilibrium analysis shows that producing complete oxidized resultants must have high molar ratio of Fe2O3/CH4. If quantity of Fe2O3 is not sufficient, more partial oxidized products such as CO, H2, even C will be produced.
基金the financial support from the National Science Foundation of China(22078190 and 12002196)the National Key Research and Development Program of China(2020YFB1505802)。
文摘Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.
基金the Ministerial Level Advanced Research Foundation(020045089)
文摘A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can overcome the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.
文摘In this study,data envelopment analysis is used to measure the tourism efficiency of 31 regions in China according to the panel data from the year 2000 to 2010.The conclusion shows that the efficiency of tourism industry is on the rise as a whole,while the diversity of every region becomes more and more apparent.High efficiency appears in east regions like Beijing,Tianjin and Shanghai where the economy is developed,and regions like Jilin,Sichuan and Gansu in the midland and west show low efficiency.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2011BAI03B00)the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2011ZX09401-305)
文摘Oviductus Ranae is the dried oviduct of female Rana tem-poraria chensinensis (David), distributed mainly in North- eastern China. Oviductus Ranae is one of the best-known and highly valued oriental foods and medicines. Traditional Chinese medicine holds that Oviductus Ranae can nourish yin, moisten lung and replenish the kidney essence. Meanwhile, activities of Oviductus Ranae such as anti-aging, anti-lipemic, anti-oxidation and anti-fatigue have also been demonstrated by modern phar-macological studies. Previous studies have shown that Oviductus Ranae is mainly composed of proteins, which are up to 50% or more.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.