Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the...Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.展开更多
We describe a new active-set, cutting-plane Constraint Optimal Selection Technique (COST) for solving general linear programming problems. We describe strategies to bound the initial problem and simultaneously add mul...We describe a new active-set, cutting-plane Constraint Optimal Selection Technique (COST) for solving general linear programming problems. We describe strategies to bound the initial problem and simultaneously add multiple constraints. We give an interpretation of the new COST’s selection rule, which considers both the depth of constraints as well as their angles from the objective function. We provide computational comparisons of the COST with existing linear programming algorithms, including other COSTs in the literature, for some large-scale problems. Finally, we discuss conclusions and future research.展开更多
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.
文摘We describe a new active-set, cutting-plane Constraint Optimal Selection Technique (COST) for solving general linear programming problems. We describe strategies to bound the initial problem and simultaneously add multiple constraints. We give an interpretation of the new COST’s selection rule, which considers both the depth of constraints as well as their angles from the objective function. We provide computational comparisons of the COST with existing linear programming algorithms, including other COSTs in the literature, for some large-scale problems. Finally, we discuss conclusions and future research.