期刊文献+
共找到203篇文章
< 1 2 11 >
每页显示 20 50 100
A research on Android kernel-memory compiling and scheduling 被引量:1
1
作者 Rui Min 《International Journal of Technology Management》 2014年第6期112-115,共4页
Android, an open source system exploited by Google, has experienced a rapid development in the past a few years in the field of intelligent mobile because of its advantages-open source and excellent function. The numb... Android, an open source system exploited by Google, has experienced a rapid development in the past a few years in the field of intelligent mobile because of its advantages-open source and excellent function. The number of professionals and enthusiasts who research on Android is growing rapidly in the same time. Android, as an abstraction between software layer and hardware layer based on Linux kernel, can complete the optimization of system by modifying the kernel part. The purpose of this design is to master the processes of kernel-compiling and transplanting, and to learn the methods of memory scheduling algorithm and kernel menaory test. First of all, this thesis introduces the installation of Linux system, and then, it presents the method to build the environment for Android kernel compiling and the process of compiling. The key point of the design is to introduce the SLAB, SLOB, SLUB, SLQB allocators in memory scheduling, and carry on a research on optimization with these memory allocators. HTC Incredible S, as an experimental mobile phone whose Android kernel version is 2.6.35, is employed to deal with all these tests. A comparison of kernel codes before and after optimization has been made. The two kernel codes have been transplanted into the terminal of the experimental mobile phone, which will be respectively tested with its stability, memory performance and overall performance. Finally, it concludes that result of being transplanted the SLQB memory allocator is the optimal one of all. 展开更多
关键词 ANDROID kernel memory COMPILING OPTIMIZATION memory allocator
在线阅读 下载PDF
基于CNN-BiLSTM-SSA的锅炉再热器壁温预测模型
2
作者 徐世明 何至谦 +6 位作者 彭献永 商忠宝 范景玮 王俊略 曲舒杨 刘洋 周怀春 《动力工程学报》 北大核心 2026年第1期121-130,共10页
针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成... 针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成分变量作为模型的最终输入。其次,考虑利用CNN捕捉局部相关性,BiLSTM学习数据的长期序列依赖性的优势,使用卷积神经网络-双向长短期记忆神经网络(CNN-BiLSTM)捕捉时序数据中的短期和长期依赖关系,引入稀疏自注意力SSA机制,通过为不同特征部分分配自适应权重,从而增强CNN-BiLSTM模型的特征提取与建模能力,最后利用在役1000 MW超超临界锅炉的历史数据进行仿真实验。结果表明:CNN-BiLSTM-SSA模型在高温再热器壁温预测中的均方根误差(RMSE)、平均绝对误差(MAE)及平均绝对百分比误差(MAPE)分别为4.92℃、3.81℃和0.6241%,相应的指标均优于CNN、LSTM、BiLSTM、CNN-LSTM和CNN-BiLSTM模型。 展开更多
关键词 再热器壁温软测量 深度学习 卷积神经网络 长短期记忆网络 注意力机制 核主成分分析 CNN-BiLSTM
在线阅读 下载PDF
Time-dependent Global Attractors for the Nonclassical Diffusion Equations with Fading Memory 被引量:1
3
作者 Yu-ming QIN Xiao-ling CHEN 《Acta Mathematicae Applicatae Sinica》 2025年第2期498-512,共15页
In this paper,we discuss the long-time behavior of solutions to the nonclassical diffusion equation with fading memory when the nonlinear term f satisfies critical exponential growth and the external force g(x)∈L^(2)... In this paper,we discuss the long-time behavior of solutions to the nonclassical diffusion equation with fading memory when the nonlinear term f satisfies critical exponential growth and the external force g(x)∈L^(2)(Ω).In the framework of time-dependent spaces,we verify the existence of absorbing sets and the asymptotic compactness of the process,then we obtain the existence of the time-dependent global attractor A={A_t}t∈Rin Mt.Furthermore,we achieve the regularity of A,that is,A_(t) is bounded in M_(t)^(1) with a bound independent of t. 展开更多
关键词 time-dependent global attractors nonclassical diffusion equation fading memory time-dependent spaces long-time behavior
原文传递
基于WKN-CBAM-BiLSTM的铣削刀具磨损状态监测
4
作者 陈玮 《工业安全与环保》 2026年第1期85-91,共7页
针对传统深度学习网络在铣削刀具故障诊断中准确率不足的问题,提出了一种创新的集成模型(WKN-CBAM-BiLSTM),该模型结合了小波核网络、注意力机制和双向长短期记忆网络,用于铣削刀具故障诊断。该网络为端到端架构,能够直接利用采集的原... 针对传统深度学习网络在铣削刀具故障诊断中准确率不足的问题,提出了一种创新的集成模型(WKN-CBAM-BiLSTM),该模型结合了小波核网络、注意力机制和双向长短期记忆网络,用于铣削刀具故障诊断。该网络为端到端架构,能够直接利用采集的原始信号执行故障诊断任务。首先,连续小波卷积层对原始信号进行降噪与初步特征提取。其次,CBAM模块中的时间与空间注意力机制用于特征增强。最后,利用BiLSTM处理时序数据的优势进行特征张量计算,并将结果传递至输出层进行分类。对所提方法的有效性进行了验证,结果表明,该方法在基于声发射信号的故障诊断中具有优异表现,平均准确率达到99.297%;此外,降噪与特征增强功能的集成显著提高了网络的分类准确性和鲁棒性。 展开更多
关键词 铣削刀具 磨损监测 小波核网络 注意力机制 双向长短期记忆网络 声发射信号
在线阅读 下载PDF
TRAJECTORY ATTRACTORS FOR NONCLASSICAL DIFFUSION EQUATIONS WITH FADING MEMORY 被引量:4
5
作者 汪永海 王灵芝 《Acta Mathematica Scientia》 SCIE CSCD 2013年第3期721-737,共17页
In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Mira... In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Miranville [7, 8], in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory. 展开更多
关键词 Trajectory attractor global attractor memory kernel
在线阅读 下载PDF
EXPONENTIAL DECAY FOR A NONLINEAR VISCOELASTIC EQUATION WITH SINGULAR KERNELS 被引量:2
6
作者 Shun-Tang Wu 《Acta Mathematica Scientia》 SCIE CSCD 2012年第6期2237-2246,共10页
The nonlinear viscoelastic wave equation |μt|^pμtt-△μ-μutt+∫^t0g(t-s)△μ(s)ds+|μ|^pU=0,in a bounded domain with initial conditions and Dirichlet boundary conditions is consid- ered. We prove that, fo... The nonlinear viscoelastic wave equation |μt|^pμtt-△μ-μutt+∫^t0g(t-s)△μ(s)ds+|μ|^pU=0,in a bounded domain with initial conditions and Dirichlet boundary conditions is consid- ered. We prove that, for a class of kernels 9 which is singular at zero, the exponential decay rate of the solution energy. The result is obtained by introducing an appropriate Lyapounov functional and using energy method similar to the work of Tatar in 2009. This work improves earlier results. 展开更多
关键词 viscoelastic wave equation kernel exponential decay memory term singular kernel
在线阅读 下载PDF
Preliminary abnormal electrocardiogram segment screening method for Holter data based on long short-term memory networks 被引量:2
7
作者 Siying Chen Hongxing Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期208-214,共7页
Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the m... Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the majority,it is reasonable to design an algorithm that can automatically eliminate normal data segments as much as possible without missing any abnormal data segments,and then take the left segments to the doctors or the computer programs for further diagnosis.In this paper,we propose a preliminary abnormal segment screening method for Holter data.Based on long short-term memory(LSTM)networks,the prediction model is established and trained with the normal data of a monitored object.Then,on the basis of kernel density estimation,we learn the distribution law of prediction errors after applying the trained LSTM model to the regular data.Based on these,the preliminary abnormal ECG segment screening analysis is carried out without R wave detection.Experiments on the MIT-BIH arrhythmia database show that,under the condition of ensuring that no abnormal point is missed,53.89% of normal segments can be effectively obviated.This work can greatly reduce the workload of subsequent further processing. 展开更多
关键词 ELECTROCARDIOGRAM LONG SHORT-TERM memory network kernel density estimation MIT-BIH ARRHYTHMIA database
原文传递
Robust state of charge estimation of lithium-ion battery via mixture kernel mean p-power error loss LSTM with heap-based-optimizer 被引量:1
8
作者 Wentao Ma Yiming Lei +1 位作者 Xiaofei Wang Badong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期768-784,I0016,共18页
The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,whi... The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,which is capable of estimating the future changing states of a nonlinear system.Since the BMS usually works under complicated operating conditions,i.e the real measurement data used for model training may be corrupted by non-Gaussian noise,and thus the performance of the original LSTM with the mean square error(MSE)loss may deteriorate.Therefore,a novel LSTM with mixture kernel mean p-power error(MKMPE)loss,called MKMPE-LSTM,is developed by using the MKMPE loss to replace the MSE as the learning criterion in LSTM framework,which can achieve robust SOC estimation under the measurement data contaminated with non-Gaussian noises(or outliers)because of the MKMPE containing the p-order moments of the error distribution.In addition,a meta-heuristic algorithm,called heap-based-optimizer(HBO),is employed to optimize the hyper-parameters(mainly including learning rate,number of hidden layer neuron and value of p in MKMPE)of the proposed MKMPE-LSTM model to further improve its flexibility and generalization performance,and a novel hybrid model(HBO-MKMPE-LSTM)is established for SOC estimation under non-Gaussian noise cases.Finally,several tests are performed under various cases through a benchmark to evaluate the performance of the proposed HBO-MKMPE-LSTM model,and the results demonstrate that the proposed hybrid method can provide a good robustness and accuracy under different non-Gaussian measurement noises,and the SOC estimation results in terms of mean square error(MSE),root MSE(RMSE),mean absolute relative error(MARE),and determination coefficient R2are less than 0.05%,3%,3%,and above 99.8%at 25℃,respectively. 展开更多
关键词 SOC estimation Long short term memory model Mixture kernel mean p-power error Heap-based-optimizer Lithium-ion battery Non-Gaussian noisy measurement data
在线阅读 下载PDF
Diffusion induced by bounded noise in a two-dimensional coupled memory system
9
作者 Pengfei Xu Wenxian Xie Li Cai 《Theoretical & Applied Mechanics Letters》 CAS 2014年第1期77-82,共6页
The diffusion behavior driven by bounded noise under the influence of a coupled harmonic potential is investigated in a two-dimensional coupled-damped model. With the help of the Laplace analysis we obtain exact descr... The diffusion behavior driven by bounded noise under the influence of a coupled harmonic potential is investigated in a two-dimensional coupled-damped model. With the help of the Laplace analysis we obtain exact descriptions for a particle’s two-time dynamics which is subjected to a coupled harmonic potential and a coupled damping. The time lag is used to describe the velocity autocorrelation function and mean square displacement of the diffusing particle. The diffusion behavior for the time lag is also discussed with respect to the coupled items and the amplitude of bounded noise. 展开更多
关键词 generalized Langevin equation bounded noise memory kernel
在线阅读 下载PDF
Fractional Langevin Equation in Quantum Systems with Memory Effect
10
作者 Jing-Nuo Wu Hsin-Chien Huang +1 位作者 Szu-Cheng Cheng Wen-Feng Hsieh 《Applied Mathematics》 2014年第12期1741-1749,共9页
In this paper, we introduce the fractional generalized Langevin equation (FGLE) in quantum systems with memory effect. For a particular form of memory kernel that characterizes the quantum system, we obtain the analyt... In this paper, we introduce the fractional generalized Langevin equation (FGLE) in quantum systems with memory effect. For a particular form of memory kernel that characterizes the quantum system, we obtain the analytical solution of the FGLE in terms of the two-parameter Mittag-Leffler function. Based on this solution, we study the time evolution of this system including the qubit excited-state energy, polarization and von Neumann entropy. Memory effect of this system is observed directly through the trapping states of these dynamics. 展开更多
关键词 FRACTIONAL Generalized LANGEVIN Equation memory Effect Mittag-Leffler Function memory kernel TRAPPING States Polarization von NEUMANN Entropy
在线阅读 下载PDF
Homogeneous Batch Memory Deduplication Using Clustering of Virtual Machines
11
作者 N.Jagadeeswari V.Mohan Raj 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期929-943,共15页
Virtualization is the backbone of cloud computing,which is a developing and widely used paradigm.Byfinding and merging identical memory pages,memory deduplication improves memory efficiency in virtualized systems.Kern... Virtualization is the backbone of cloud computing,which is a developing and widely used paradigm.Byfinding and merging identical memory pages,memory deduplication improves memory efficiency in virtualized systems.Kernel Same Page Merging(KSM)is a Linux service for memory pages sharing in virtualized environments.Memory deduplication is vulnerable to a memory disclosure attack,which uses covert channel establishment to reveal the contents of other colocated virtual machines.To avoid a memory disclosure attack,sharing of identical pages within a single user’s virtual machine is permitted,but sharing of contents between different users is forbidden.In our proposed approach,virtual machines with similar operating systems of active domains in a node are recognised and organised into a homogenous batch,with memory deduplication performed inside that batch,to improve the memory pages sharing efficiency.When compared to memory deduplication applied to the entire host,implementation details demonstrate a significant increase in the number of pages shared when memory deduplication applied batch-wise and CPU(Central processing unit)consumption also increased. 展开更多
关键词 kernel same page merging memory deduplication virtual machine sharing content-based sharing
在线阅读 下载PDF
Network Traffic Prediction Using Radial Kernelized-Tversky Indexes-Based Multilayer Classifier
12
作者 M.Govindarajan V.Chandrasekaran S.Anitha 《Computer Systems Science & Engineering》 SCIE EI 2022年第3期851-863,共13页
Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment.... Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment.Given the increasing dense population of data,traffic learning and prediction are the main components to substantially enhance the effectiveness of demand-aware resource allocation.A novel deep learning technique called radial kernelized LSTM-based connectionist Tversky multilayer deep structure learning(RKLSTM-CTMDSL)model is introduced for traffic prediction with superior accuracy and minimal time consumption.The RKLSTM-CTMDSL model performs attribute selection and classification processes for cellular traffic prediction.In this model,the connectionist Tversky multilayer deep structure learning includes multiple layers for traffic prediction.A large volume of spatial-temporal data are considered as an input-to-input layer.Thereafter,input data are transmitted to hidden layer 1,where a radial kernelized long short-term memory architecture is designed for the relevant attribute selection using activation function results.After obtaining the relevant attributes,the selected attributes are given to the next layer.Tversky index function is used in this layer to compute similarities among the training and testing traffic patterns.Tversky similarity index outcomes are given to the output layer.Similarity value is used as basis to classify data as heavy network or normal traffic.Thus,cellular network traffic prediction is presented with minimal error rate using the RKLSTM-CTMDSL model.Comparative evaluation proved that the RKLSTM-CTMDSL model outperforms conventional methods. 展开更多
关键词 Cellular network traffic prediction connectionist Tversky multilayer deep structure learning attribute selection classification radial kernelized long short-term memory
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
13
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于EMD-KPCA-LSTM与SVG控制的双馈风电系统次同步振荡抑制方法
14
作者 张旭 徐鑫 +1 位作者 董成武 张继龙 《电气工程学报》 北大核心 2025年第2期54-67,共14页
静止无功发生器(Static var generator, SVG)凭借其快速动态响应特性,在抑制双馈风电系统并网的次同步振荡方面发挥了重要作用。然而,传统控制策略在应对系统复杂的非线性和时变特性时,仍存在一定的局限性。为此,提出一种基于经验模态分... 静止无功发生器(Static var generator, SVG)凭借其快速动态响应特性,在抑制双馈风电系统并网的次同步振荡方面发挥了重要作用。然而,传统控制策略在应对系统复杂的非线性和时变特性时,仍存在一定的局限性。为此,提出一种基于经验模态分解(Empirical mode decomposition, EMD)、核主成分分析(Kernel principal component analysis, KPCA)、长短期记忆网络(Long short-term memory, LSTM)与SVG附加阻尼控制的次同步振荡抑制方法。首先,通过EMD提取系统的振荡特征,利用KPCA进行降维优化,进一步通过LSTM对系统的动态特性进行建模与预测,从而显著提高了预测精度。在此基础上,结合SVG的附加阻尼控制功能,实时调节SVG的控制信号,有效抑制次同步振荡,提升系统的稳定性。该方法的创新在于将信号处理技术与深度学习算法相结合,构建了一个高效的预测与控制框架,为传统控制策略提供了全新思路。最后,利用PSCAD进行仿真分析,验证了该方法的有效性,为高渗透率新能源电网的稳定运行提供了技术支持。 展开更多
关键词 次同步振荡 经验模态分解 长短期记忆网络 双馈风电系统 静止无功发生器 核主成分分析
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
15
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于ICEEMDAN-KPCA-ICPA-LSTM的光伏发电功率预测 被引量:2
16
作者 姚钦才 向文国 +2 位作者 陈时熠 曹敬 郑涛 《动力工程学报》 北大核心 2025年第3期374-382,共9页
光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法... 光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法。首先,该方法通过ICEEMDAN提取气象数据中非线性信号的隐含特征;其次,采用核主成分分析降低分解后产生的冗余信息,并根据主成分贡献率大小选取模型输入参数;最后,对食肉植物算法(CPA)进行改进,构建ICPA-LSTM模型,并开展了晴天、雨天、多云和多变天气4种典型天气类型下光伏发电功率预测校验。结果表明:在不同天气情况下,所提模型的决定系数R 2均大于99%,相较于对照模型具有更好的预测性能。 展开更多
关键词 光伏发电预测 ICEEMDAN 长短期记忆网络 食肉植物算法 核主成分分析
在线阅读 下载PDF
基于VMD-KPCA-LSTM的桥梁监测应变数据预测 被引量:4
17
作者 张希望 朱前坤 +1 位作者 王宪玉 杜永峰 《应用基础与工程科学学报》 北大核心 2025年第1期76-86,共11页
桥梁结构健康监测系统在采集数据时会受到各种干扰,数据异常时有发生,难以反应桥梁真实的健康状况.针对数据异常情况,提出了结合变分模态分解(Variational Mode Decomposition,VMD)、核主成分分析(Kernel Principal Component Analysis,... 桥梁结构健康监测系统在采集数据时会受到各种干扰,数据异常时有发生,难以反应桥梁真实的健康状况.针对数据异常情况,提出了结合变分模态分解(Variational Mode Decomposition,VMD)、核主成分分析(Kernel Principal Component Analysis,KPCA)以及长短期记忆神经网络(Long Short-Term Memory neural network,LSTM)的异常数据处理方法,即VMD-KPCA-LSTM.首先,将采集到的数据通过小波降噪和3σ异常剔除进行简单的预处理;然后,利用VMD将数据分解为模态相对稳定的应变分量;再次使用KPCA进行非线性降维;最后,进行各分量的LSTM预测,整合得到总的应变重构时序.与BP模型、GRU模型、LSTM模型和VMD-PCA-LSTM模型相比,VMD-KPCA-LSTM模型的MAPE分别降低了19.948%、13.621%、11.724%、7.238%.因此,提出的VMD-KPCA-LSTM模型可以更好地用于斜拉桥应变异常数据的预测,为桥梁健康状况评估分析提供了坚实的数据基础. 展开更多
关键词 桥梁工程 健康监测 变分模态分解 核主成分分析 长短期记忆神经网络 数据预测
原文传递
基于冠豪猪优化CNN-BiLSTM和核密度估计的月径流区间预测 被引量:1
18
作者 吴小涛 郭欣 +3 位作者 袁晓辉 晏莉娟 曾志强 陆涛 《长江科学院院报》 北大核心 2025年第9期51-57,66,共8页
径流预测对水资源合理配置、制定水力发电计划等非常重要,针对月径流点预测精度不高以及点预测结果难以描述月径流不确定性等问题,提出基于冠豪猪优化算法、卷积神经网络、双向长短时记忆网络和非参数核密度估计的月径流点预测模型和区... 径流预测对水资源合理配置、制定水力发电计划等非常重要,针对月径流点预测精度不高以及点预测结果难以描述月径流不确定性等问题,提出基于冠豪猪优化算法、卷积神经网络、双向长短时记忆网络和非参数核密度估计的月径流点预测模型和区间预测模型。首先,构建组合卷积神经网络和双向长短时记忆网络的月径流点预测模型,并采用冠豪猪优化算法优化模型的隐藏层单元数等参数,将月径流及影响因素数据输入模型得到月径流的点预测结果。然后采用极差分割法将点预测结果排序后划分为低流量段、中流量段和高流量段,再利用冠豪猪优化算法优化窗宽的非参数核密度估计方法估计3个流量段预测值误差的概率分布,并采用三次样条插值法进行曲线拟合,得到3个流量段的分位点。最后叠加点预测结果和点预测结果所属流量段的分位点得到月径流区间预测结果。通过实例分析,与其他模型相比,提出的CPO-CNN-BiLSTM点预测模型预测精度更高,能较好地追踪月径流的变化趋势,提出的CPO-CNN-BiLSTM-NKDE区间预测模型可有效减少月径流预测的不确定性,能够为决策者提供更多信息。 展开更多
关键词 月径流预测 冠豪猪优化算法 卷积神经网络 双向长短时记忆网络 非参数核密度估计
在线阅读 下载PDF
基于多隐层极限学习机的产品质量预测方法 被引量:1
19
作者 丁鹏程 战洪飞 +2 位作者 林颖俊 余军合 王瑞 《计算机集成制造系统》 北大核心 2025年第11期4130-4143,共14页
在产品生产过程中,准确快速地预测产品质量有助于企业及时调整制造工艺,降低损失。针对实际生产过程中,现场采集的工艺数据存在维度高、相关性复杂且用传统方法难以准确预测的问题,提出一种基于改进多隐层极限学习机(LCGWO-DMKEA-BLSTM... 在产品生产过程中,准确快速地预测产品质量有助于企业及时调整制造工艺,降低损失。针对实际生产过程中,现场采集的工艺数据存在维度高、相关性复杂且用传统方法难以准确预测的问题,提出一种基于改进多隐层极限学习机(LCGWO-DMKEA-BLSTM)的方法。首先,通过互信息法(MI)对采集的生产工艺特征参数进行筛选,组成模型输入初始特征集。其次,将高斯核函数与反余弦核函数加权结合,构造出新的混合核函数,并引入自动编码器对极限学习机进行改进,建立深度多内核极限学习机自编码器(DMKEA)特征挖掘模型,从高维复杂工艺特征集中提取最能反映产品质量的关键特征信息,输入决策层双向长短时神经网络(BLSTM)中进行质量预测。在DMKEA学习训练中,采用基于Circle混沌映射和Levy飞行策略改进的灰狼算法(LCGWO),优化惩罚系数、核参数以及核函数组合权重,提高DMKEA的特征挖掘能力。最后用半导体薄膜晶体管液晶显示器生产线的工艺数据实验验证了所提方法的有效性。研究成果有助于企业实现准确地产品质量预测,也为企业生产的数据赋能提供参考。 展开更多
关键词 质量预测 互信息法 改进多隐层极限学习机 混合核函数 双向长短时神经网络 Circle混沌映射 Levy飞行 改进灰狼算法
在线阅读 下载PDF
基于LSTM-Transformer的分布式光伏违规扩容识别方法
20
作者 魏梅芳 李雄 +2 位作者 周文晴 李彬 苏盛 《太阳能学报》 北大核心 2025年第12期324-332,共9页
针对用户分布式光伏违规扩容威胁配电系统安全可靠运行的问题,提出一种基于长短期记忆网络(LSTM)-Transformer的分布式光伏违规扩容识别方法,首先进行时间序列数值和形态相似性预处理,筛选出与标杆电站气象情况一致的光伏电站;然后构建L... 针对用户分布式光伏违规扩容威胁配电系统安全可靠运行的问题,提出一种基于长短期记忆网络(LSTM)-Transformer的分布式光伏违规扩容识别方法,首先进行时间序列数值和形态相似性预处理,筛选出与标杆电站气象情况一致的光伏电站;然后构建LSTM-Transformer模型,利用预处理后的数据进行训练和参数优化,预测光伏电站的理论出力;进而采用高斯核函数,基于实际发电功率与模型预测输出偏差计算违规扩容指数(IEI),基于IEI的数值和突变时间检测光伏用户违规扩容严重程度和扩容时间。通过实际光伏用户数据验证了所提方法的有效性。 展开更多
关键词 分布式光伏 长短期记忆网络 Transformer模型 发电预测 高斯核函数 异常检测
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部