In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^...In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^(∞) weak-entropy solution converges to the nonlinear diffusion wave of the generalized porous media equation(GPME)in L^(2)(R).As λ∈(1/7,1),we prove that the L^(∞) weak-entropy solution converges to an expansion around the nonlinear diffusion wave in L^(2)(R),which is the best asymptotic profile.The proof is based on intensive entropy analysis and an energy method.展开更多
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i...This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.展开更多
This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 ...This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 and μ 〉 0 are constants. We have showed that, for all λ ≥ 0 andμ 〉 0 the smooth solution to the Cauchy problem exists globally or blows up in finite time. In the present paper, instead of the Cauchy problem we consider the initial- boundary value problem in the half space R+^d with space dimension d = 2, 3. With the help of the special structure of the equations and the fluid vorticity, we overcome the difficulty arisen from the boundary effect. We prove that there exists a global smooth solution for 0 ≤λ 〈 1 when the initial data is close to its equilibrium state. In addition, exponential decay of the fluid vorticity will also be established.展开更多
7075 aluminum alloy is often used as an important load-bearing structure in aircraft industry due to its superior mechanical properties.During the process of deep hole boring,the boring bar is prone to vibrate because...7075 aluminum alloy is often used as an important load-bearing structure in aircraft industry due to its superior mechanical properties.During the process of deep hole boring,the boring bar is prone to vibrate because of its limited machining space,bad environment and large elongation induced low stiffness.To reduce vibration and improve machined surface quality,a particle damping boring bar,filled with particles in its inside damping block,is designed based on the theory of vibration control.The theoretical damping coefficient is determined,then the boring bar structure is designed and trial-manufactured.Experimental studies through impact testing show that cemented carbide particles with a diameter of 5 mm and a filling rate of 70% achieve a damping ratio of 19.386%,providing excellent vibration reduction capabilities,which may reduce the possibility of boring vibration.Then,experiments are setup to investigate its vibration reduction performance during deep hole boring of 7075 aluminum alloy.To observe more obviously,severe working conditions are adopted and carried out to acquire the time domain vibration signal of the head of the boring bar and the surface morphologies and roughness values of the workpieces.By comparing different experimental results,it is found that the designed boring bar could reduce the maximum vibration amplitude by up to 81.01% and the surface roughness value by up to 47.09% compared with the ordinary boring bar in two sets of experiments,proving that the designed boring bar can effectively reduce vibration.This study can offer certain valuable insights for the machining of this material.展开更多
Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological s...Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
The propagator for a time-dependent damped harmonic oscillator with a force quadratic in velocity is obtained by making a specific coordinate transformation and by using the method of time-dependent invariant.
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic...With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.展开更多
For the solution of peridynamic equations of motion,a meshless approach is typically used instead of utilizing semi-analytical or mesh-based approaches.In contrast,the literature has limited analytical solutions.This ...For the solution of peridynamic equations of motion,a meshless approach is typically used instead of utilizing semi-analytical or mesh-based approaches.In contrast,the literature has limited analytical solutions.This study develops a novel analytical solution for one-dimensional peridynamic models,considering the effect of damping.After demonstrating the details of the analytical solution,various demonstration problems are presented.First,the free vibration of a damped system is considered for under-damped and critically damped conditions.Peridynamic solutions and results from the classical theory are compared against each other,and excellent agreement is observed between the two approaches.Next,forced vibration analyses of undamped and damped conditions are performed.In addition,the effect of horizon size is investigated.It is shown that for smaller horizon sizes,peridynamic results agree well with classical results,whereas results from these two approaches deviate from each other as the horizon size increases.展开更多
This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered ...This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.展开更多
The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich inf...The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich information about the surrounding microenvironment.MR methods to measure time-dependent diffusion quantitatively,however,require either non-standard pulse sequences,such as oscillating gradients,or make non-physical assumptions,such as infinitely narrow gradient pulses.Here,we argue that standard spin echo and stimulated echo MR sequences can be used to probe directly.In particular,we propose a framework in which the log-signal ratio obtained from a pair of measurements with different inter-pulse spacingΔis proportional to the MSD between these twoΔvalues along the gradient direction x:-.The framework is quantitative for short,finite-duration gradient pulses and under the Gaussian phase approximation(GPA).To validate the framework,we consider onedimensional diffusion between impermeable,parallel planes,as well as periodicallyspaced,permeable planes.Excellent agreement is obtained between the estimation and the ground truth in the regime where the GPA is expected to hold.Importantly,the GPA can be made to hold for any underlying microstructure,making the proposed framework widely applicable.展开更多
In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attra...In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attractor in C_(Hg) is equal to the global attractor in C_(Vg).展开更多
This paper investigates nonlinear Landau damping in the 3D Vlasov-Poisson(VP)system.We study the asymptotic stability of the Poisson equilibriumμ(v)=1/π^(2)(1+|v|^(2))^(2) under small perturbations.Building on the f...This paper investigates nonlinear Landau damping in the 3D Vlasov-Poisson(VP)system.We study the asymptotic stability of the Poisson equilibriumμ(v)=1/π^(2)(1+|v|^(2))^(2) under small perturbations.Building on the foundational work of Ionescu,Pausader,Wang and Widmayer[28],we provide a streamlined proof of nonlinear Landau damping for the 3D unscreened VP system.Our analysis leverages sharp decay estimates,novel decomposition techniques to demonstrate the stabilization of the particle distribution and the decay of electric field.These results reveal the free transport-like behavior for the perturbed densityρ(t,x),and enhance the understanding of Landau damping in an unconfined setting near stable equilibria.展开更多
The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies m...The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies make it possible to fabricate these highly spatially programmable structures and greatly enhance the freedom in their design.However,traditional analytical methods do not sufficiently reflect the actual vibration-damping mechanism of lattice structures and are limited by their high computational cost.In this study,a hybrid lattice structure consisting of various cells was designed based on quasi-static and vibration experiments.Subsequently,a novel parametric design method based on a data-driven approach was developed for hybrid lattices with engineered properties.The response surface method was adopted to define the sensitive optimization target.A prediction model for the lattice geometric parameters and vibration properties was established using a backpropagation neural network.Then,it was integrated into the genetic algorithm to create the optimal hybrid lattice with varying geometric features and the required wide-band vibration-damping characteristics.Validation experiments were conducted,demonstrating that the optimized hybrid lattice can achieve the target properties.In addition,the data-driven parametric design method can reduce computation time and be widely applied to complex structural designs when analytical and empirical solutions are unavailable.展开更多
On the basis of the model tests,this paper explores the coupled hydrodynamic performance of the moonpool and the hull.This study aims to compare and analyze the variation in the hull heave response between the piston ...On the basis of the model tests,this paper explores the coupled hydrodynamic performance of the moonpool and the hull.This study aims to compare and analyze the variation in the hull heave response between the piston resonance state of the moonpool under wave excitation and the non-resonance state of the moonpool under wave-current excitation.A novel damping device specifically designed and fabricated for stepped moonpools has been developed.Before and after the installation of the damping device,the free surface response characteristics of the moonpool and heave motion response characteristics of the hull are compared.The findings show a clear correlation between the current speed and heave response characteristics of the hull.During the seakeeping design phase of the drilling vessel,the current speed is an additional critical factor that cannot be disregarded,alongside the moonpool effect.A correlation exists between the fluid dynamics occurring within the moonpool and the heave motion of the vessel hull.A reduction in the amplitude of the motion of the moonpool water results in a decrease in the heave motion of the hull.This study provides a reference for alleviating the seakeeping of a drill ship’s heave response and enhancing the safety and efficiency of the operation.展开更多
This article first outlines the fundamental definitions of Mycoplasma pneumoniae and the basic principles of antibiotics. It then analyzes and discusses the progress in antibiotic application and time-eff ect studies ...This article first outlines the fundamental definitions of Mycoplasma pneumoniae and the basic principles of antibiotics. It then analyzes and discusses the progress in antibiotic application and time-eff ect studies for neonatal pneumonia treatment, specifically comparing conventional antibiotic therapy with stepwise treatment regimens, and contrasting monotherapy with penicillin, monotherapy with cephalosporins, and combination therapy. Finally, it offers a prospective outlook on antibiotic application and time-effect research in neonatal pneumonia treatment, aiming to provide valuable reference for further scholarly investigations.展开更多
Magnonics and magnonic materials have attracted widespread interest in the spintronics community and demonstrate potential for applications in the next generation of information technology.Recent advances in manganite...Magnonics and magnonic materials have attracted widespread interest in the spintronics community and demonstrate potential for applications in the next generation of information technology.Recent advances in manganite thin films highlight their promise for magnonics,in which enhanced film quality and strain control of spin and electronic structures play a crucial role in reducing magnetic damping.Here,we report the fabrication of La_(0.67)Sr_(0.33)MnO_(3) thin films of varying quality via pulsed laser deposition.The quality of epitaxial films is characterized using atomic force microscopy and x-ray diffraction.A pronounced fourfold anisotropy in the magnetic damping(with a ratio of about 150%)is observed,where the minimum damping occurs along the[110]crystalline orientation.Notably,improved sample quality significantly reduces the magnetic damping at low temperatures.The highest-quality sample,featuring atomic-scale terraces,exhibits a magnetic damping of~2.5×10^(-3)at 5 K.Our results not only demonstrate effective reduction of low-temperature magnetic damping in high-quality correlated oxide systems but also provides a strategy and material platform for exploring novel quantum phenomena and for designing low-temperature magnonic devices.展开更多
This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,wh...This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations.展开更多
The paper is devoted to establishing the long-time behavior of solutions to the extensible beam equation with rotational inertia and nonlocal strong damping.Within the theory of asymptotical smoothness,we investigate ...The paper is devoted to establishing the long-time behavior of solutions to the extensible beam equation with rotational inertia and nonlocal strong damping.Within the theory of asymptotical smoothness,we investigate the existence of the attractor by using the contractive function method and more detailed estimates.展开更多
Ni-Mn-Ga-Cu microwires,with diameter of 20-80 μm,length of 30-150 mm and fined columnar grains,were produced by melt-extraction technique.The damping capacity of the extracted micro wires was investigated by stretchi...Ni-Mn-Ga-Cu microwires,with diameter of 20-80 μm,length of 30-150 mm and fined columnar grains,were produced by melt-extraction technique.The damping capacity of the extracted micro wires was investigated by stretching a micro wire under a tensile stress using dynamic mechanical analyzer.The damping capacity of the martensite and austenite phases shows a weak frequency dependence but a strong strain amplitude dependence.The damping capacity(Tanδ) of the martensite and austenite phases reaches 0.08 and 0.04,respectively,under strain amplitude of 0.5% and frequency of 1 Hz.The high damping capacity of the martensite phase is related to the high mobility of martensite twin boudaries,while that of austenite phase to the motion of dislocations.The ferromagnetic Ni-Mn-Ga-Cu micro wires,with high ductility and damping capacity,may act as promising materials for microscale devices,systems and composite fillers for passive dissipation of undesired vibrations and noises.展开更多
基金S.Geng's research was supported in part by the National Natural Science Foundation of China(12071397)Excellent Youth Project of Hunan Education Department(21B0165)+1 种基金F.Huang's research was supported in part by the National Key R&D Program of China 2021YFA1000800the National Natural Science Foundation of China(12288201).
文摘In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^(∞) weak-entropy solution converges to the nonlinear diffusion wave of the generalized porous media equation(GPME)in L^(2)(R).As λ∈(1/7,1),we prove that the L^(∞) weak-entropy solution converges to an expansion around the nonlinear diffusion wave in L^(2)(R),which is the best asymptotic profile.The proof is based on intensive entropy analysis and an energy method.
文摘This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.
文摘This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 and μ 〉 0 are constants. We have showed that, for all λ ≥ 0 andμ 〉 0 the smooth solution to the Cauchy problem exists globally or blows up in finite time. In the present paper, instead of the Cauchy problem we consider the initial- boundary value problem in the half space R+^d with space dimension d = 2, 3. With the help of the special structure of the equations and the fluid vorticity, we overcome the difficulty arisen from the boundary effect. We prove that there exists a global smooth solution for 0 ≤λ 〈 1 when the initial data is close to its equilibrium state. In addition, exponential decay of the fluid vorticity will also be established.
基金supported by the Scientific Research Program of Tianjin Education Committee(No.2022ZD030)。
文摘7075 aluminum alloy is often used as an important load-bearing structure in aircraft industry due to its superior mechanical properties.During the process of deep hole boring,the boring bar is prone to vibrate because of its limited machining space,bad environment and large elongation induced low stiffness.To reduce vibration and improve machined surface quality,a particle damping boring bar,filled with particles in its inside damping block,is designed based on the theory of vibration control.The theoretical damping coefficient is determined,then the boring bar structure is designed and trial-manufactured.Experimental studies through impact testing show that cemented carbide particles with a diameter of 5 mm and a filling rate of 70% achieve a damping ratio of 19.386%,providing excellent vibration reduction capabilities,which may reduce the possibility of boring vibration.Then,experiments are setup to investigate its vibration reduction performance during deep hole boring of 7075 aluminum alloy.To observe more obviously,severe working conditions are adopted and carried out to acquire the time domain vibration signal of the head of the boring bar and the surface morphologies and roughness values of the workpieces.By comparing different experimental results,it is found that the designed boring bar could reduce the maximum vibration amplitude by up to 81.01% and the surface roughness value by up to 47.09% compared with the ordinary boring bar in two sets of experiments,proving that the designed boring bar can effectively reduce vibration.This study can offer certain valuable insights for the machining of this material.
基金supported by the National Natural Science Foundation of China(Grant Nos.41877267,41877260)the Priority Research Program of the Chinese Academy of Science(Grant No.XDA13010201).
文摘Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
文摘The propagator for a time-dependent damped harmonic oscillator with a force quadratic in velocity is obtained by making a specific coordinate transformation and by using the method of time-dependent invariant.
基金financially supported by the Scientific Research Foundation of North China University of Technology(Grant Nos.11005136024XN147-87 and 110051360024XN151-86).
文摘With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.
文摘For the solution of peridynamic equations of motion,a meshless approach is typically used instead of utilizing semi-analytical or mesh-based approaches.In contrast,the literature has limited analytical solutions.This study develops a novel analytical solution for one-dimensional peridynamic models,considering the effect of damping.After demonstrating the details of the analytical solution,various demonstration problems are presented.First,the free vibration of a damped system is considered for under-damped and critically damped conditions.Peridynamic solutions and results from the classical theory are compared against each other,and excellent agreement is observed between the two approaches.Next,forced vibration analyses of undamped and damped conditions are performed.In addition,the effect of horizon size is investigated.It is shown that for smaller horizon sizes,peridynamic results agree well with classical results,whereas results from these two approaches deviate from each other as the horizon size increases.
基金the postdoctoral research grant received from the University of Glasgow for the partial financial support for this research work。
文摘This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.
基金supported by the intramural research program(IRP)of the Eunice Kennedy Shriver National Institute of Child Health and Human Development。
文摘The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich information about the surrounding microenvironment.MR methods to measure time-dependent diffusion quantitatively,however,require either non-standard pulse sequences,such as oscillating gradients,or make non-physical assumptions,such as infinitely narrow gradient pulses.Here,we argue that standard spin echo and stimulated echo MR sequences can be used to probe directly.In particular,we propose a framework in which the log-signal ratio obtained from a pair of measurements with different inter-pulse spacingΔis proportional to the MSD between these twoΔvalues along the gradient direction x:-.The framework is quantitative for short,finite-duration gradient pulses and under the Gaussian phase approximation(GPA).To validate the framework,we consider onedimensional diffusion between impermeable,parallel planes,as well as periodicallyspaced,permeable planes.Excellent agreement is obtained between the estimation and the ground truth in the regime where the GPA is expected to hold.Importantly,the GPA can be made to hold for any underlying microstructure,making the proposed framework widely applicable.
基金Supported by the National Natural Science Foundation of China(11971378)Shaanxi Fundamental Science Research Project for Mathematics and Physics(23JSY050)Shaanxi Innovative Training Program for College Students(S202410719114)。
文摘In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attractor in C_(Hg) is equal to the global attractor in C_(Vg).
基金supported by the Academy of Mathematics and Systems ScienceChinese Academy of Sciences startup fund+3 种基金the National Natural Science Foundation of China(12050410257,12288201)the National Key R&D Program of China(2021YFA1000800)partially supported by the National Key R&D Program of China(2021YFA1001500)partially supported by the NSF of China(12288101)。
文摘This paper investigates nonlinear Landau damping in the 3D Vlasov-Poisson(VP)system.We study the asymptotic stability of the Poisson equilibriumμ(v)=1/π^(2)(1+|v|^(2))^(2) under small perturbations.Building on the foundational work of Ionescu,Pausader,Wang and Widmayer[28],we provide a streamlined proof of nonlinear Landau damping for the 3D unscreened VP system.Our analysis leverages sharp decay estimates,novel decomposition techniques to demonstrate the stabilization of the particle distribution and the decay of electric field.These results reveal the free transport-like behavior for the perturbed densityρ(t,x),and enhance the understanding of Landau damping in an unconfined setting near stable equilibria.
基金supported by National Natural Science Foundation of China(Grant No.52375380)National Key R&D Program of China(Grant No.2022YFB3402200)the Key Project of National Natural Science Foundation of China(Grant No.12032018).
文摘The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies make it possible to fabricate these highly spatially programmable structures and greatly enhance the freedom in their design.However,traditional analytical methods do not sufficiently reflect the actual vibration-damping mechanism of lattice structures and are limited by their high computational cost.In this study,a hybrid lattice structure consisting of various cells was designed based on quasi-static and vibration experiments.Subsequently,a novel parametric design method based on a data-driven approach was developed for hybrid lattices with engineered properties.The response surface method was adopted to define the sensitive optimization target.A prediction model for the lattice geometric parameters and vibration properties was established using a backpropagation neural network.Then,it was integrated into the genetic algorithm to create the optimal hybrid lattice with varying geometric features and the required wide-band vibration-damping characteristics.Validation experiments were conducted,demonstrating that the optimized hybrid lattice can achieve the target properties.In addition,the data-driven parametric design method can reduce computation time and be widely applied to complex structural designs when analytical and empirical solutions are unavailable.
基金supported by the National Natural Science Foundation of Jiangsu Province,China(Grant No.BK20231255).
文摘On the basis of the model tests,this paper explores the coupled hydrodynamic performance of the moonpool and the hull.This study aims to compare and analyze the variation in the hull heave response between the piston resonance state of the moonpool under wave excitation and the non-resonance state of the moonpool under wave-current excitation.A novel damping device specifically designed and fabricated for stepped moonpools has been developed.Before and after the installation of the damping device,the free surface response characteristics of the moonpool and heave motion response characteristics of the hull are compared.The findings show a clear correlation between the current speed and heave response characteristics of the hull.During the seakeeping design phase of the drilling vessel,the current speed is an additional critical factor that cannot be disregarded,alongside the moonpool effect.A correlation exists between the fluid dynamics occurring within the moonpool and the heave motion of the vessel hull.A reduction in the amplitude of the motion of the moonpool water results in a decrease in the heave motion of the hull.This study provides a reference for alleviating the seakeeping of a drill ship’s heave response and enhancing the safety and efficiency of the operation.
文摘This article first outlines the fundamental definitions of Mycoplasma pneumoniae and the basic principles of antibiotics. It then analyzes and discusses the progress in antibiotic application and time-eff ect studies for neonatal pneumonia treatment, specifically comparing conventional antibiotic therapy with stepwise treatment regimens, and contrasting monotherapy with penicillin, monotherapy with cephalosporins, and combination therapy. Finally, it offers a prospective outlook on antibiotic application and time-effect research in neonatal pneumonia treatment, aiming to provide valuable reference for further scholarly investigations.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFA1406500,J.Z.,2021YFA0718700,J.Z.)the National Natural Science Foundation of China(Grant Nos.T2350005,J.Z.,12404119,Y.Z.,52225205,J.Z.)+1 种基金the Beijing Natural Science Foundation(Grant No.Z240008,J.Z.)the Fundamental Research Funds for the Central Universities(Y.Z.and J.Z.)。
文摘Magnonics and magnonic materials have attracted widespread interest in the spintronics community and demonstrate potential for applications in the next generation of information technology.Recent advances in manganite thin films highlight their promise for magnonics,in which enhanced film quality and strain control of spin and electronic structures play a crucial role in reducing magnetic damping.Here,we report the fabrication of La_(0.67)Sr_(0.33)MnO_(3) thin films of varying quality via pulsed laser deposition.The quality of epitaxial films is characterized using atomic force microscopy and x-ray diffraction.A pronounced fourfold anisotropy in the magnetic damping(with a ratio of about 150%)is observed,where the minimum damping occurs along the[110]crystalline orientation.Notably,improved sample quality significantly reduces the magnetic damping at low temperatures.The highest-quality sample,featuring atomic-scale terraces,exhibits a magnetic damping of~2.5×10^(-3)at 5 K.Our results not only demonstrate effective reduction of low-temperature magnetic damping in high-quality correlated oxide systems but also provides a strategy and material platform for exploring novel quantum phenomena and for designing low-temperature magnonic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.42475016,42192555 and 42305085)the China Postdoctoral Science Foundation(Grant No.2023M741615)the 2023 Graduate Research Innovation Project of Hunan Province(Grant No.CX20230011)。
文摘This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1210150211961059)the University Innovation Project of Gansu Province(Grant No.2023B-062).
文摘The paper is devoted to establishing the long-time behavior of solutions to the extensible beam equation with rotational inertia and nonlocal strong damping.Within the theory of asymptotical smoothness,we investigate the existence of the attractor by using the contractive function method and more detailed estimates.
基金financially supported by the Ministry of Science and Technology Bureau of Harbin(No.2011RFQXG001)
文摘Ni-Mn-Ga-Cu microwires,with diameter of 20-80 μm,length of 30-150 mm and fined columnar grains,were produced by melt-extraction technique.The damping capacity of the extracted micro wires was investigated by stretching a micro wire under a tensile stress using dynamic mechanical analyzer.The damping capacity of the martensite and austenite phases shows a weak frequency dependence but a strong strain amplitude dependence.The damping capacity(Tanδ) of the martensite and austenite phases reaches 0.08 and 0.04,respectively,under strain amplitude of 0.5% and frequency of 1 Hz.The high damping capacity of the martensite phase is related to the high mobility of martensite twin boudaries,while that of austenite phase to the motion of dislocations.The ferromagnetic Ni-Mn-Ga-Cu micro wires,with high ductility and damping capacity,may act as promising materials for microscale devices,systems and composite fillers for passive dissipation of undesired vibrations and noises.