We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<sp...We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with a screened Kratzer-Hellmann potential which is constructed by the temporal counterpart of the spatial form of this potential. In addition, we got exact eigenvalues of the momentum and the eigenstates by solving Feinberg-Horodecki equation with Kratzer potential. The present work is illustrated with three special cases of the screened Kratzer-Hellman potential: the time-dependent screened Kratzer potential, time-dependent Hellmann potential and, the time-dependent screened Coulomb potential.展开更多
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ...A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.展开更多
Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of t...Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.展开更多
GM管广泛应用于辐射测量,由于传统的测量方法受到GM管死时间的影响,其测量精度不高。介绍了没有死时间影响,可以提高测量精度的T im e-to-Coun t技术的测量方法,并从理论上论证了采用该方法的数学原理,在此基础上,提出对辐射强度的新估...GM管广泛应用于辐射测量,由于传统的测量方法受到GM管死时间的影响,其测量精度不高。介绍了没有死时间影响,可以提高测量精度的T im e-to-Coun t技术的测量方法,并从理论上论证了采用该方法的数学原理,在此基础上,提出对辐射强度的新估计式,并证明该估计是无偏的渐近最优的,是形式中最优的。并通过计算机仿真证明了该方法的正确性。展开更多
An eigenaxis maneuver strategy with global robustness is studied for large angle attitude maneuver of rigid spacecraft. A sliding mode attitude control algorithm with an exponential time-varying sliding surface is des...An eigenaxis maneuver strategy with global robustness is studied for large angle attitude maneuver of rigid spacecraft. A sliding mode attitude control algorithm with an exponential time-varying sliding surface is designed, which guarantees the sliding mode occurrence at the beginning and eliminates the reaching phase of time-invariant sliding mode control. The proposed control law is global robust against matched external disturbances and system uncertainties, and ensures the eigenaxis rotation in the presence of disturbances and parametric uncertainties. The stability of the control law and the existence of global siding mode are proved by Lyapunov method. Furthermore, the system states can be fully predicted by the analytical solution of state equations, which indicates that the attitude error does not exhibit any overshoots and the system has a good dynamic response. A control torque command regulator is introduced to ensure the eigenaxis rotation under the actuator saturation. Finally, a numerical simulation is employed to illustrate the advantages of the proposed control law.展开更多
Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional...Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.展开更多
文摘We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with a screened Kratzer-Hellmann potential which is constructed by the temporal counterpart of the spatial form of this potential. In addition, we got exact eigenvalues of the momentum and the eigenstates by solving Feinberg-Horodecki equation with Kratzer potential. The present work is illustrated with three special cases of the screened Kratzer-Hellman potential: the time-dependent screened Kratzer potential, time-dependent Hellmann potential and, the time-dependent screened Coulomb potential.
基金This project was supported by the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103).
文摘A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.
基金This research was supported by the National Nature Science Foundation of China (No. 41074100) and the Program for NewCentury Excellent Talents in the University of the Ministry of Education of China (No. NCET- 10-0812).
文摘Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.
文摘GM管广泛应用于辐射测量,由于传统的测量方法受到GM管死时间的影响,其测量精度不高。介绍了没有死时间影响,可以提高测量精度的T im e-to-Coun t技术的测量方法,并从理论上论证了采用该方法的数学原理,在此基础上,提出对辐射强度的新估计式,并证明该估计是无偏的渐近最优的,是形式中最优的。并通过计算机仿真证明了该方法的正确性。
基金National Natural Science Foundation of China (10872030)
文摘An eigenaxis maneuver strategy with global robustness is studied for large angle attitude maneuver of rigid spacecraft. A sliding mode attitude control algorithm with an exponential time-varying sliding surface is designed, which guarantees the sliding mode occurrence at the beginning and eliminates the reaching phase of time-invariant sliding mode control. The proposed control law is global robust against matched external disturbances and system uncertainties, and ensures the eigenaxis rotation in the presence of disturbances and parametric uncertainties. The stability of the control law and the existence of global siding mode are proved by Lyapunov method. Furthermore, the system states can be fully predicted by the analytical solution of state equations, which indicates that the attitude error does not exhibit any overshoots and the system has a good dynamic response. A control torque command regulator is introduced to ensure the eigenaxis rotation under the actuator saturation. Finally, a numerical simulation is employed to illustrate the advantages of the proposed control law.
基金Aeronautical Science Foundation of China (20071551016)
文摘Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.