Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking(RVD) for an unmanned spacecraft when the autonomous system is failure or for guiding the chaser docking with an unco...Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking(RVD) for an unmanned spacecraft when the autonomous system is failure or for guiding the chaser docking with an uncooperative target.The theoretical model for analyzing the handling qualities in teleoperation RVD process is established based on the previous studies conducted by National Aeronautics and Space Administration(NASA).The predictive factor is introduced to describe the pilot's predictive ability in the teleoperation tasks with time delay,which interrelates with the skills of a pilot and the predictive assist approach used in the tasks such as the predictive display method.Based on the semi-physical simulation system in our laboratory,900 experiments at two levels of time delay are carried out by 18 volunteers for validating the established model.The experimental results demonstrate the correctness of the theoretical model and indicate that a skilled pilot has a predictive ability of approximately 0.9 in teleoperation RVD tasks.The theoretical analysis shows that the handling qualities are greatly affected by the time delay and the predictive factor,and it is impossible to achieve a teleoperation RVD task for the skilled pilot when the time delay is larger than 9.0 s.展开更多
The Boltzmann-Bhatnagar-Gross-Krook(BGK)model is investigated for its validity regarding the collision term approximation through relaxation evaluation. The evaluation is based on theoretical analysis and numerical ...The Boltzmann-Bhatnagar-Gross-Krook(BGK)model is investigated for its validity regarding the collision term approximation through relaxation evaluation. The evaluation is based on theoretical analysis and numerical comparison between the BGK and direct simulation Monte Carlo(DSMC) results for three specifically designed relaxation problems. In these problems, one or half component of the velocity distribution is characterized by another Maxwellian distribution with a different temperature. It is analyzed that the relaxation time in the BGK model is unequal to the molecular mean collision time. Relaxation of component distribution fails to involve enough contribution from other component distributions, which makes the BGK model unable to capture details of velocity distribution, especially when discontinuity exists in distribution. The BGK model,however, predicts satisfactory results including fluxes during relaxation when the temperature difference is small. Particularly, the model-induced error in the BGK model increases with the temperature difference, thus the model is more reliable for low-speed rarefied flows than for hypersonic flows.展开更多
In accordance with a new compensation principle of discrete computations,the traditional meteo- rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into perfect energy cons...In accordance with a new compensation principle of discrete computations,the traditional meteo- rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into perfect energy conservative fidelity schemes,thus resolving the problems of both nonlinear computa- tional instability and incomplete energy conservation,and raising the computational efficiency of the traditional schemes. As the numerical tests of the new schemes demonstrate,in solving the problem of energy conser- vation in operational computations,the new schemes can eliminate the (nonlinear) computational in- stability and,to some extent even the (nonlinear) computational diverging as found in the traditional schemes,Further contrasts between new and traditional schemes also indicate that,in discrete opera- tional computations,the new scheme in the case of nondivergence is capable of prolonging the valid in- tegral time of the corresponding traditional scheme,and eliminating certain kind of systematical com- putational“climate drift”,meanwhile increasing its computational accuracy and reducing its amount of computation.The working principle of this paper is also applicable to the problem concerning baroclin- ic primitive equations.展开更多
文摘Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking(RVD) for an unmanned spacecraft when the autonomous system is failure or for guiding the chaser docking with an uncooperative target.The theoretical model for analyzing the handling qualities in teleoperation RVD process is established based on the previous studies conducted by National Aeronautics and Space Administration(NASA).The predictive factor is introduced to describe the pilot's predictive ability in the teleoperation tasks with time delay,which interrelates with the skills of a pilot and the predictive assist approach used in the tasks such as the predictive display method.Based on the semi-physical simulation system in our laboratory,900 experiments at two levels of time delay are carried out by 18 volunteers for validating the established model.The experimental results demonstrate the correctness of the theoretical model and indicate that a skilled pilot has a predictive ability of approximately 0.9 in teleoperation RVD tasks.The theoretical analysis shows that the handling qualities are greatly affected by the time delay and the predictive factor,and it is impossible to achieve a teleoperation RVD task for the skilled pilot when the time delay is larger than 9.0 s.
基金supported by the National Natural Science Foundation of China(91116013,11372325,and 11111120080)
文摘The Boltzmann-Bhatnagar-Gross-Krook(BGK)model is investigated for its validity regarding the collision term approximation through relaxation evaluation. The evaluation is based on theoretical analysis and numerical comparison between the BGK and direct simulation Monte Carlo(DSMC) results for three specifically designed relaxation problems. In these problems, one or half component of the velocity distribution is characterized by another Maxwellian distribution with a different temperature. It is analyzed that the relaxation time in the BGK model is unequal to the molecular mean collision time. Relaxation of component distribution fails to involve enough contribution from other component distributions, which makes the BGK model unable to capture details of velocity distribution, especially when discontinuity exists in distribution. The BGK model,however, predicts satisfactory results including fluxes during relaxation when the temperature difference is small. Particularly, the model-induced error in the BGK model increases with the temperature difference, thus the model is more reliable for low-speed rarefied flows than for hypersonic flows.
基金Sponsored partly by Priority-Scientific-Projects for China's 7th and 8th Five-Year Plana Priority Project of the Director's Foundation of the Institute of Atmospheric PhysicsChinese Academy of Sciences.
文摘In accordance with a new compensation principle of discrete computations,the traditional meteo- rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into perfect energy conservative fidelity schemes,thus resolving the problems of both nonlinear computa- tional instability and incomplete energy conservation,and raising the computational efficiency of the traditional schemes. As the numerical tests of the new schemes demonstrate,in solving the problem of energy conser- vation in operational computations,the new schemes can eliminate the (nonlinear) computational in- stability and,to some extent even the (nonlinear) computational diverging as found in the traditional schemes,Further contrasts between new and traditional schemes also indicate that,in discrete opera- tional computations,the new scheme in the case of nondivergence is capable of prolonging the valid in- tegral time of the corresponding traditional scheme,and eliminating certain kind of systematical com- putational“climate drift”,meanwhile increasing its computational accuracy and reducing its amount of computation.The working principle of this paper is also applicable to the problem concerning baroclin- ic primitive equations.