This paper presents a new simple method of implicit time integration with two control parameters for solving initial-value problems of dynamics such that its accuracy is at least of order two along with the conditiona...This paper presents a new simple method of implicit time integration with two control parameters for solving initial-value problems of dynamics such that its accuracy is at least of order two along with the conditional and unconditional stability regions of the parameters. When the control parameters in the method are optimally taken in their regions, the accuracy may be improved to reach of order three. It is found that the new scheme can achieve lower numerical amplitude dissipation and period dispersion than some of the existing methods, e.g. the Newmark method and Zhai's approach, when the same time step size is used. The region of time step dependent on the parameters in the new scheme is explicitly obtained. Finally, some examples of dynamic problems are given to show the accuracy and efficiency of the proposed scheme applied in dynamic systems.展开更多
In this article,the mode superposition method is combined with a time integration method like the trapezoidal rule to improve solution accuracy for linear dynamic systems.In this combination strategy,the essential thi...In this article,the mode superposition method is combined with a time integration method like the trapezoidal rule to improve solution accuracy for linear dynamic systems.In this combination strategy,the essential thing is to decompose a dynamic system into two sub-systems,a small-scale low-frequency system and a high-frequency system.The former can be analytically and efficiently solved with the mode superposition method,and the latter is dealt with through a time integration method such as the Newmark method.The summation of the responses of these two sub-systems is the responses of the original dynamic system.It is concluded that,with little sacrifice of efficiency,the combination method based on the strategy is more accurate than the combined time integration method,but it has the same accuracy order as that of the combined method.Numerical experiments validate the effectiveness of the proposed strategy.展开更多
Based on the weighted residual method,a single-step time integration algorithm with higher-order accuracy and unconditional stability has been proposed,which is superior to the second-order accurate algorithms in trac...Based on the weighted residual method,a single-step time integration algorithm with higher-order accuracy and unconditional stability has been proposed,which is superior to the second-order accurate algorithms in tracking long-term dynamics.For improving such a higher-order accurate algorithm,this paper proposes a two sub-step higher-order algorithm with unconditional stability and controllable dissipation.In the proposed algorithm,a time step interval[t_(k),t_(k)+h]where h stands for the size of a time step is divided into two sub-steps[t_(k),t_(k)+γh]and[t_(k)+γh,t_(k)+h].A non-dissipative fourth-order algorithm is used in the rst sub-step to ensure low-frequency accuracy and a dissipative third-order algorithm is employed in the second sub-step to lter out the contribution of high-frequency modes.Besides,two approaches are used to design the algorithm parameterγ.The rst approach determinesγby maximizing low-frequency accuracy and the other determinesγfor quickly damping out highfrequency modes.The present algorithm usesρ_(∞)to exactly control the degree of numerical dissipation,and it is third-order accurate when 0≤ρ_(∞)<1 and fourth-order accurate whenρ_(∞)=1.Furthermore,the proposed algorithm is self-starting and easy to implement.Some illustrative linear and nonlinear examples are solved to check the performances of the proposed two sub-step higher-order algorithm.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
In the traditional radar unmanned aerial vehicle(UAV)detection process,coherent integration and micro-Doppler(m-D)parameter estimation are carried out separately.The target discrimination process needs to obtain the p...In the traditional radar unmanned aerial vehicle(UAV)detection process,coherent integration and micro-Doppler(m-D)parameter estimation are carried out separately.The target discrimination process needs to obtain the position information of the target,which will lose energy.In this paper,a long time integration method of radar signal based on rotating target radon Fourier transform(RTRFT)is proposed.This method modifies the distance and frequency terms in the traditional generalized radon Fourier transform(GRFT),and adds the frequency sinusoidal modulation term.Then,based on the cardinality balanced multi-target multi-Bernoulli(CBMeMBer)filter,the position of the target is detected in the high-dimensional space obtained by RTRFT.This method can combine coherent integration and micro-motion parameter estimation.Simulation experiments show that the proposed method can estimate the main translational parameters and rotational micro-motion parameters of the target while detecting the target,and the target detection performance is improved.展开更多
Discontinuous deformation analysis(DDA) is a numerical method for analyzing the deformation of block system. It employs unified dynamic formulation for both static and dynamic analysis, in which the so-called kinetic ...Discontinuous deformation analysis(DDA) is a numerical method for analyzing the deformation of block system. It employs unified dynamic formulation for both static and dynamic analysis, in which the so-called kinetic damping is adopted for absorbing dynamic energy. The DDA dynamic equations are integrated directly by the constant acceleration algorithm of Newmark family integrators. In order to have an insight into the DDA time integration scheme, the performance of Newmark time integration scheme for dynamic equations with kinetic damping is systematically investigated, formulae of stability, bifurcation, spectral radius, critical kinetic damping and algorithmic damping are presented. Combining with numerical examples, recognition and suggestions of Newmark integration scheme application in the DDA static and dynamic analysis are proposed.展开更多
The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficu...The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.展开更多
Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the comp...Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the complete sources of CCD noise, we study the effects of TDI operation mode on noise, and the relationship between different types of noise and number of the TDI stage. Then we propose a new technique to identify and measure sources of TDI CCD noise employing mathematical statistics theory, where theoretical analysis shows that noise estimated formulation converges well. Finally, we establish a testing platform to carry out experiments, and a standard TDI CCD is calibrated by using the proposed method. The experimental results show that the noise analysis and measurement methods presented in this paper are useful for modeling TDI CCDs.展开更多
The numerical time step integrations of PDEs are mainly carried out by the finitedifference method to date. However,when the time step becomes longer, it causes theproblem of numerical instability,. The explicit integ...The numerical time step integrations of PDEs are mainly carried out by the finitedifference method to date. However,when the time step becomes longer, it causes theproblem of numerical instability,. The explicit integration schemes derived by the singlepoint precise integration method given in this paper are proved unconditionally stable.Comparisons between the schemes derived by the finite difference method and theschemes by the method employed in the present paper are made for diffusion andconvective-diffusion equations. Nunierical examples show the superiority of the singlepoint integration method.展开更多
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy...Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.展开更多
For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by, introducing into the dual variable (Lagrange multiplier vector), the dynam...For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by, introducing into the dual variable (Lagrange multiplier vector), the dynamic equation can be transformed into Hamilton system from Lagrange system on the basis of the original variable. Under the whole state, the problem discussed can be described from a new view, and the equation can be precisely solved by, the time precise integration method established in linear dynamic system. A numerical example shows the effectiveness of the method.展开更多
A generalized solution scheme using implicit time integrators for piecewise linear and nonlinear systems is developed.The piecewise linear characteristic has been well‐discussed in previous studies,in which the origi...A generalized solution scheme using implicit time integrators for piecewise linear and nonlinear systems is developed.The piecewise linear characteristic has been well‐discussed in previous studies,in which the original problem has been transformed into linear complementarity problems(LCPs)and then solved via the Lemke algorithm for each time step.The proposed scheme,instead,uses the projection function to describe the discontinuity in the dynamics equations,and solves for each step the nonlinear equations obtained from the implicit integrator by the semismooth Newton iteration.Compared with the LCP‐based scheme,the new scheme offers a more general choice by allowing other nonlinearities in the governing equations.To assess its performances,several illustrative examples are solved.The numerical solutions demonstrate that the new scheme can not only predict satisfactory results for piecewise nonlinear systems,but also exhibits substantial efficiency advantages over the LCP‐based scheme when applied to piecewise linear systems.展开更多
The Lagrangian integral time scale(LITS)is a crucial characteristic for investigating the changes in fluid dynamics induced by the chaotic nature,and the finitetime Lyapunov exponent(FTLE)serves as a key measure in th...The Lagrangian integral time scale(LITS)is a crucial characteristic for investigating the changes in fluid dynamics induced by the chaotic nature,and the finitetime Lyapunov exponent(FTLE)serves as a key measure in the analysis of chaos.In this study,a new LITS model with an explicit theoretical basis and broad applicability is proposed based on the FTLE,along with a verification and evaluation criterion grounded in the Lagrangian velocity correlation coefficient.The model is used to cavitating the flow around a Clark-Y hydrofoil,and the LITS is investigated.It leads to the determination of model constants applicable to cavitating flow.The model is evaluated by the Lagrangian velocity correlation coefficient in comparison with other solution methods.All the results show that the LITS model can offer a new perspective and a new approach for studying the changes in fluid dynamics from a Lagrangian viewpoint.展开更多
We present a comprehensive extension of the integral of first passage times(IFS)method to investigate the adsorption kinetics of polymers with multiple binding sites on planar surfaces.While effective for single-point...We present a comprehensive extension of the integral of first passage times(IFS)method to investigate the adsorption kinetics of polymers with multiple binding sites on planar surfaces.While effective for single-point adsorption,the original IFS method was limited in capturing the complex kinetics of multi-point adsorption due to inadequate reaction coordinates and theoretical frameworks.Our approach introduces a center-of-mass-based reaction coordinate and a generalized kinetic model that accounts for multi-barrier free energy landscapes characteristic of collective polymer diffusion and binding.This theoretical advancement,implemented using the adaptive bias force method for efficient sampling,enables prediction of adsorption kinetics across timescales from nanoseconds to seconds.Our results demonstrate that adsorption behavior is governed by two key factors:the number of binding monomers primarily controls desorption barriers and long-term stability,while the configuration of pre-adsorbed layers significantly modulates both adsorption and desorption rates.Polymers with three or more binding sites exhibit effectively irreversible adsorption due to exponentially increasing desorption barriers,whereas different adsorbed layer configurations lead to distinct equilibrium coverages and kinetic profiles.This extended IFS framework provides critical insights for designing functional surfaces in nanoscale sensing,macromolecular recognition,and tailored polymeric coatings where precise control over adsorption kinetics is essential.展开更多
To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of...To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of the memorial dynamics. Stability criteria of the scheme for an advection equation in certain conditions are derived mathematically. The computations for the advection equation have been conducted with its RT scheme. It is shown that the accuracy of the scheme is much higher than that of the leapfrog (LF) difference scheme.展开更多
This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order...This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.展开更多
We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatia...We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.展开更多
In this work,a consistent and physically accurate implementation of the general framework of unified second-order time accurate integrators via the well-known GSSSS framework in the Discrete Element Method is presente...In this work,a consistent and physically accurate implementation of the general framework of unified second-order time accurate integrators via the well-known GSSSS framework in the Discrete Element Method is presented.The improved tangential displacement evaluation in the present implementation of the discrete element method has been derived and implemented to preserve the consistency of the correct time level evaluation during the time integration process in calculating the algorithmic tangential displacement.Several numerical examples have been used to validate the proposed tangential displacement evaluation;this is in contrast to past practices which only seem to attain the first-order time accuracy due to inconsistent time level implementation with different algorithms for normal and tangential directions.The comparisons with the existing implementation and the superiority of the proposed implementation are given in terms of the convergence rate with improved numerical accuracy in time.Moreover,several schemes via the unified second-order time integrators within the framework of the GSSSS family have been carried out based on the proposed correct implementation.All the numerical results demonstrate that using the existing state-of-the-art implementation reduces the time accuracy to be first-order accurate in time,while the proposed implementation preserves the correct time accuracy to yield second-order.展开更多
A balanced adaptive time-stepping strategy is implemented in an implicit discontinuous Galerkin solver to guarantee the temporal accuracy of unsteady simulations.A proper relation between the spatial,temporal and iter...A balanced adaptive time-stepping strategy is implemented in an implicit discontinuous Galerkin solver to guarantee the temporal accuracy of unsteady simulations.A proper relation between the spatial,temporal and iterative errors generated within one time step is constructed.With an estimate of temporal and spatial error using an embedded RungeKutta scheme and a higher order spatial discretization,an adaptive time-stepping strategy is proposed based on the idea that the time step should be the maximum without obviously infuencing the total error of the discretization.The designed adaptive time-stepping strategy is then tested in various types of problems including isentropic vortex convection,steady-state fow past a fat plate,Taylor-Green vortex and turbulent fow over a circular cylinder at Re=3900.The results indicate that the adaptive time-stepping strategy can maintain that the discretization error is dominated by the spatial error and relatively high efciency is obtained for unsteady and steady,well-resolved and under-resolved simulations.展开更多
In this paper,we discuss on the convergence and approximation of an α times integrated semigroups. The Trotter kato theorems for an α times integrated semigroups are obtained.
基金The project supported by the National Key Basic Research and Development Foundation of the Ministry of Science and Technology of China (G2000048702, 2003CB716707)the National Science Fund for Distinguished Young Scholars (10025208)+1 种基金 the National Natural Science Foundation of China (Key Program) (10532040) the Research Fund for 0versea Chinese (10228028).
文摘This paper presents a new simple method of implicit time integration with two control parameters for solving initial-value problems of dynamics such that its accuracy is at least of order two along with the conditional and unconditional stability regions of the parameters. When the control parameters in the method are optimally taken in their regions, the accuracy may be improved to reach of order three. It is found that the new scheme can achieve lower numerical amplitude dissipation and period dispersion than some of the existing methods, e.g. the Newmark method and Zhai's approach, when the same time step size is used. The region of time step dependent on the parameters in the new scheme is explicitly obtained. Finally, some examples of dynamic problems are given to show the accuracy and efficiency of the proposed scheme applied in dynamic systems.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11872090 and 12172023).
文摘In this article,the mode superposition method is combined with a time integration method like the trapezoidal rule to improve solution accuracy for linear dynamic systems.In this combination strategy,the essential thing is to decompose a dynamic system into two sub-systems,a small-scale low-frequency system and a high-frequency system.The former can be analytically and efficiently solved with the mode superposition method,and the latter is dealt with through a time integration method such as the Newmark method.The summation of the responses of these two sub-systems is the responses of the original dynamic system.It is concluded that,with little sacrifice of efficiency,the combination method based on the strategy is more accurate than the combined time integration method,but it has the same accuracy order as that of the combined method.Numerical experiments validate the effectiveness of the proposed strategy.
基金supported by the National Natural Science Foundation of China(Grant Numbers 11872090,11672019,11472035).
文摘Based on the weighted residual method,a single-step time integration algorithm with higher-order accuracy and unconditional stability has been proposed,which is superior to the second-order accurate algorithms in tracking long-term dynamics.For improving such a higher-order accurate algorithm,this paper proposes a two sub-step higher-order algorithm with unconditional stability and controllable dissipation.In the proposed algorithm,a time step interval[t_(k),t_(k)+h]where h stands for the size of a time step is divided into two sub-steps[t_(k),t_(k)+γh]and[t_(k)+γh,t_(k)+h].A non-dissipative fourth-order algorithm is used in the rst sub-step to ensure low-frequency accuracy and a dissipative third-order algorithm is employed in the second sub-step to lter out the contribution of high-frequency modes.Besides,two approaches are used to design the algorithm parameterγ.The rst approach determinesγby maximizing low-frequency accuracy and the other determinesγfor quickly damping out highfrequency modes.The present algorithm usesρ_(∞)to exactly control the degree of numerical dissipation,and it is third-order accurate when 0≤ρ_(∞)<1 and fourth-order accurate whenρ_(∞)=1.Furthermore,the proposed algorithm is self-starting and easy to implement.Some illustrative linear and nonlinear examples are solved to check the performances of the proposed two sub-step higher-order algorithm.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
文摘In the traditional radar unmanned aerial vehicle(UAV)detection process,coherent integration and micro-Doppler(m-D)parameter estimation are carried out separately.The target discrimination process needs to obtain the position information of the target,which will lose energy.In this paper,a long time integration method of radar signal based on rotating target radon Fourier transform(RTRFT)is proposed.This method modifies the distance and frequency terms in the traditional generalized radon Fourier transform(GRFT),and adds the frequency sinusoidal modulation term.Then,based on the cardinality balanced multi-target multi-Bernoulli(CBMeMBer)filter,the position of the target is detected in the high-dimensional space obtained by RTRFT.This method can combine coherent integration and micro-motion parameter estimation.Simulation experiments show that the proposed method can estimate the main translational parameters and rotational micro-motion parameters of the target while detecting the target,and the target detection performance is improved.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institutes(Grant No.CKSF2014053/CL)
文摘Discontinuous deformation analysis(DDA) is a numerical method for analyzing the deformation of block system. It employs unified dynamic formulation for both static and dynamic analysis, in which the so-called kinetic damping is adopted for absorbing dynamic energy. The DDA dynamic equations are integrated directly by the constant acceleration algorithm of Newmark family integrators. In order to have an insight into the DDA time integration scheme, the performance of Newmark time integration scheme for dynamic equations with kinetic damping is systematically investigated, formulae of stability, bifurcation, spectral radius, critical kinetic damping and algorithmic damping are presented. Combining with numerical examples, recognition and suggestions of Newmark integration scheme application in the DDA static and dynamic analysis are proposed.
基金financial support from Hunan Provincial Natura1 Science Foundation of China,Grant Number:02JJY2085,for this study
文摘The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA06A208)
文摘Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the complete sources of CCD noise, we study the effects of TDI operation mode on noise, and the relationship between different types of noise and number of the TDI stage. Then we propose a new technique to identify and measure sources of TDI CCD noise employing mathematical statistics theory, where theoretical analysis shows that noise estimated formulation converges well. Finally, we establish a testing platform to carry out experiments, and a standard TDI CCD is calibrated by using the proposed method. The experimental results show that the noise analysis and measurement methods presented in this paper are useful for modeling TDI CCDs.
文摘The numerical time step integrations of PDEs are mainly carried out by the finitedifference method to date. However,when the time step becomes longer, it causes theproblem of numerical instability,. The explicit integration schemes derived by the singlepoint precise integration method given in this paper are proved unconditionally stable.Comparisons between the schemes derived by the finite difference method and theschemes by the method employed in the present paper are made for diffusion andconvective-diffusion equations. Nunierical examples show the superiority of the singlepoint integration method.
基金National Natural Science Foundation of China under Grant Nos.51639006 and 51725901
文摘Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
文摘For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by, introducing into the dual variable (Lagrange multiplier vector), the dynamic equation can be transformed into Hamilton system from Lagrange system on the basis of the original variable. Under the whole state, the problem discussed can be described from a new view, and the equation can be precisely solved by, the time precise integration method established in linear dynamic system. A numerical example shows the effectiveness of the method.
文摘A generalized solution scheme using implicit time integrators for piecewise linear and nonlinear systems is developed.The piecewise linear characteristic has been well‐discussed in previous studies,in which the original problem has been transformed into linear complementarity problems(LCPs)and then solved via the Lemke algorithm for each time step.The proposed scheme,instead,uses the projection function to describe the discontinuity in the dynamics equations,and solves for each step the nonlinear equations obtained from the implicit integrator by the semismooth Newton iteration.Compared with the LCP‐based scheme,the new scheme offers a more general choice by allowing other nonlinearities in the governing equations.To assess its performances,several illustrative examples are solved.The numerical solutions demonstrate that the new scheme can not only predict satisfactory results for piecewise nonlinear systems,but also exhibits substantial efficiency advantages over the LCP‐based scheme when applied to piecewise linear systems.
基金Project supported by the Key Project of the National Natural Science Foundation of China(No.52336001)the Natural Science Foundation of Zhejiang Province of China(No.LR20E090001)。
文摘The Lagrangian integral time scale(LITS)is a crucial characteristic for investigating the changes in fluid dynamics induced by the chaotic nature,and the finitetime Lyapunov exponent(FTLE)serves as a key measure in the analysis of chaos.In this study,a new LITS model with an explicit theoretical basis and broad applicability is proposed based on the FTLE,along with a verification and evaluation criterion grounded in the Lagrangian velocity correlation coefficient.The model is used to cavitating the flow around a Clark-Y hydrofoil,and the LITS is investigated.It leads to the determination of model constants applicable to cavitating flow.The model is evaluated by the Lagrangian velocity correlation coefficient in comparison with other solution methods.All the results show that the LITS model can offer a new perspective and a new approach for studying the changes in fluid dynamics from a Lagrangian viewpoint.
基金financially supported by the National Natural Science Foundation of China(No.12374207)the Natural Science Foundation of Jiangsu Province(No.BK20233001)supported by the Big Data Computing Center of Southeast University。
文摘We present a comprehensive extension of the integral of first passage times(IFS)method to investigate the adsorption kinetics of polymers with multiple binding sites on planar surfaces.While effective for single-point adsorption,the original IFS method was limited in capturing the complex kinetics of multi-point adsorption due to inadequate reaction coordinates and theoretical frameworks.Our approach introduces a center-of-mass-based reaction coordinate and a generalized kinetic model that accounts for multi-barrier free energy landscapes characteristic of collective polymer diffusion and binding.This theoretical advancement,implemented using the adaptive bias force method for efficient sampling,enables prediction of adsorption kinetics across timescales from nanoseconds to seconds.Our results demonstrate that adsorption behavior is governed by two key factors:the number of binding monomers primarily controls desorption barriers and long-term stability,while the configuration of pre-adsorbed layers significantly modulates both adsorption and desorption rates.Polymers with three or more binding sites exhibit effectively irreversible adsorption due to exponentially increasing desorption barriers,whereas different adsorbed layer configurations lead to distinct equilibrium coverages and kinetic profiles.This extended IFS framework provides critical insights for designing functional surfaces in nanoscale sensing,macromolecular recognition,and tailored polymeric coatings where precise control over adsorption kinetics is essential.
基金The project supported by the National Key Program for Developing Basic Sciences (G1999043408 and G1998040901-1)the National Natural Sciences Foundation of China (40175024 and 40035010)
文摘To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of the memorial dynamics. Stability criteria of the scheme for an advection equation in certain conditions are derived mathematically. The computations for the advection equation have been conducted with its RT scheme. It is shown that the accuracy of the scheme is much higher than that of the leapfrog (LF) difference scheme.
基金supported by the National Natural Science Foun-dation of China (11172334)
文摘This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.
文摘We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.
文摘In this work,a consistent and physically accurate implementation of the general framework of unified second-order time accurate integrators via the well-known GSSSS framework in the Discrete Element Method is presented.The improved tangential displacement evaluation in the present implementation of the discrete element method has been derived and implemented to preserve the consistency of the correct time level evaluation during the time integration process in calculating the algorithmic tangential displacement.Several numerical examples have been used to validate the proposed tangential displacement evaluation;this is in contrast to past practices which only seem to attain the first-order time accuracy due to inconsistent time level implementation with different algorithms for normal and tangential directions.The comparisons with the existing implementation and the superiority of the proposed implementation are given in terms of the convergence rate with improved numerical accuracy in time.Moreover,several schemes via the unified second-order time integrators within the framework of the GSSSS family have been carried out based on the proposed correct implementation.All the numerical results demonstrate that using the existing state-of-the-art implementation reduces the time accuracy to be first-order accurate in time,while the proposed implementation preserves the correct time accuracy to yield second-order.
基金Zhen-Guo Yan acknowledges supports from the National Natural Science Foundation of China(Grant no.11902344)National Numerical Windtunnel Project.The development of the implicit solver in Nektar++has been supported by EPSRC grant(EP/R029423/1)UK Turbulence Consortium grant(EP/R029326/1).
文摘A balanced adaptive time-stepping strategy is implemented in an implicit discontinuous Galerkin solver to guarantee the temporal accuracy of unsteady simulations.A proper relation between the spatial,temporal and iterative errors generated within one time step is constructed.With an estimate of temporal and spatial error using an embedded RungeKutta scheme and a higher order spatial discretization,an adaptive time-stepping strategy is proposed based on the idea that the time step should be the maximum without obviously infuencing the total error of the discretization.The designed adaptive time-stepping strategy is then tested in various types of problems including isentropic vortex convection,steady-state fow past a fat plate,Taylor-Green vortex and turbulent fow over a circular cylinder at Re=3900.The results indicate that the adaptive time-stepping strategy can maintain that the discretization error is dominated by the spatial error and relatively high efciency is obtained for unsteady and steady,well-resolved and under-resolved simulations.
文摘In this paper,we discuss on the convergence and approximation of an α times integrated semigroups. The Trotter kato theorems for an α times integrated semigroups are obtained.