In this article, numerical modeling of borehole radar for well logging in time domain is developed using pseudo-spectral time domain algorithm in axisymmetric cylindrical coordinate for proximate true formation model....In this article, numerical modeling of borehole radar for well logging in time domain is developed using pseudo-spectral time domain algorithm in axisymmetric cylindrical coordinate for proximate true formation model. The conductivity and relative permittivity logging curves are obtained from the data of borehole radar for well logging. Since the relative permittivity logging curve is not affected by salinity of formation water, borehole radar for well logging has obvious advantages as compared with conventional electrical logging. The borehole radar for well logging is a one-transmitter and two-receiver logging tool. The conductivity and relative permittivity logging curves are obtained successfully by measuring the amplitude radio and the time difference of pulse waveform from two receivers. The calculated conductivity and relative permittivity logging curves are close to the true value of surrounding formation, which tests the usability and reliability of borehole radar for well logging. The numerical modeling of borehole radar for well logging laid the important foundation for researching its logging tool.展开更多
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained...The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement.展开更多
To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave pro...To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.展开更多
All step-by-step integration methods available at present for structural dynamic analysis use the displacement, velocity, and acceleration vectors computed at a previous interval for evaluating those at an advanced ti...All step-by-step integration methods available at present for structural dynamic analysis use the displacement, velocity, and acceleration vectors computed at a previous interval for evaluating those at an advanced time step. Hence, an accumulated error will be definitely introduced after such integration. This paper presents a novel time-domain-advance integration method for transient elastodynamic problems in which the exact initial conditions are strictly satisfied for the solutions for each time step. In this way, the accumu- lated error can be eliminated and the approximate solutions will converge to the exact ones uniformly on the whole time domain. Therefore. the new method is more accurate. When applying to a structural dynamic problem, the present mehtod does not have to use the initial acceleration as is required by most other algorithms and the corresponding computation can be avoided. The present method is simple in representation, easy to be programmed, and especially suitable for accurate analyses of long-time problems. The comparison of numerical results with exact ones shows that the present method is much more accurate than some most widely used algorithms.展开更多
Synthetic aperture radar can provide two dimension images by converting the acquired echoed SAR signal to target’s coordinate and reflectivity. With the advancement of sophisticated SAR signal processing, more and mo...Synthetic aperture radar can provide two dimension images by converting the acquired echoed SAR signal to target’s coordinate and reflectivity. With the advancement of sophisticated SAR signal processing, more and more SAR imaging methods have been proposed for synthetic aperture radar which works at near field and the Fresnel approximation is not appropriate. Time domain correlation is a kind of digital reconstruction method based on processing the synthetic aperture radar data in the two-dimensional frequency domain via Fourier transform. It reconstructs SAR image via simply correlation without any need for approximation or interpolation. But its high computational cost for correlation makes it unsuitable for real time imaging. In order to reduce the computational burden a modified algorithm about time domain correlation was given in this paper. It also can take full advantage of parallel computations of the imaging processor. Its practical implementation was proposed and the preliminary simulation results were presented. Simulation results show that the proposed algorithm is a computationally efficient way of implementing the reconstruction in real time SAR image processing.展开更多
The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB mon...The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB monopole is used to obtain the band-notched characteristic for 5 GHz wireless local area network (WLAN) band. The measured results show that voltage standing wave ration (VSWR) less than 2 covers 3.1-10.6 GHz operating band and VSWR more than 2 is within 5.150-5.825 GHz notched one with the highest value of 5.6. Agreement among the calculated, HFSS simulated and measured results validates the effiectiveness of this MGA-FDTD method, which is efficient for UWB antennas design.展开更多
Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theor...Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theory of dipole is presented.On the foundation of researching the principle of a time domain imaging algorithm,the back projection(BP) algorithm is derived and analyzed.Firstly,the far field sampling data are transferred to the near field sampling data by using the near field radiation theory of dipole.Then the BP algorithm is applied to target detection.The capability of the new algorithm to detect the multi-target is verified by using the finite-difference time-domain method,and the threedimensional images of targets are obtained.The coupling effect between targets for imaging is analyzed.The simulation results show that the new UWB radar imaging algorithm based on the near field radiation theory of dipole could weaken the coupling effect for imaging,and as a result the quality of imaging is improved.展开更多
China has a vast territory with a great demand for electricity. However, the resources are in reverse distribution in the country. Therefore, high voltage direct current transmission has great practical significance a...China has a vast territory with a great demand for electricity. However, the resources are in reverse distribution in the country. Therefore, high voltage direct current transmission has great practical significance and been widely used. However, traditional fault location methods have a lot of problems in engineering application for the length of transmission line and the complexity of the terrain. This paper proposes a comprehensive evaluation algorithm based on the travelling wave method and time domain method. It also proposes a concept of fault point reliability. This algorithm analyzes the fault point reliability in the whole transmission line to determine the specific location of the fault point. This paper proves that the algorithm has high reliability by PSCAD simulation software.展开更多
With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, ne...With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, new antennas should be developed to provide larger bandwidth and at the same time small dimensions. Although the gain in bandwidth performances of an antenna are directly related to its dimensions in relation to the wavelength, the aim is to keep the overall size of the antenna constant and from there, find the geometry and structure that give the best performance. The design and bandwidth optimization of a Planar Inverted-F Antenna (PIFA) were introduced in order to achieve a larger bandwidth in the 2 GHz band, using two optimization techniques based upon genetic algorithms (GA), namely the Binary Coded GA (BCGA) and Real-Coded GA (RCGA). During the optimization process, the different PIFA models were evaluated using the finite-difference time domain (FDTD) method-a technique belonging to the general class of differential time domain numerical modeling methods.展开更多
基金supported by the Open Fund of Key Laboratory of Geo-detection (China University of Geosciences,Beijing),Ministry of Education (No. GDL0805)
文摘In this article, numerical modeling of borehole radar for well logging in time domain is developed using pseudo-spectral time domain algorithm in axisymmetric cylindrical coordinate for proximate true formation model. The conductivity and relative permittivity logging curves are obtained from the data of borehole radar for well logging. Since the relative permittivity logging curve is not affected by salinity of formation water, borehole radar for well logging has obvious advantages as compared with conventional electrical logging. The borehole radar for well logging is a one-transmitter and two-receiver logging tool. The conductivity and relative permittivity logging curves are obtained successfully by measuring the amplitude radio and the time difference of pulse waveform from two receivers. The calculated conductivity and relative permittivity logging curves are close to the true value of surrounding formation, which tests the usability and reliability of borehole radar for well logging. The numerical modeling of borehole radar for well logging laid the important foundation for researching its logging tool.
基金supported by the National Key R&D Program of China (No.2021YFC2801202)the National Natural Science Foundation of China (No.42076224)the Fundamental Research Funds for the Central Universities (No.202262012)。
文摘The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement.
基金This paper is supported by the Focused Subject Program of Beijing (No. XK104910598)Foundation for Returned Students of Ministry of Education, and Foundation of China University of Geosciences (Beijing).
文摘To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.
文摘All step-by-step integration methods available at present for structural dynamic analysis use the displacement, velocity, and acceleration vectors computed at a previous interval for evaluating those at an advanced time step. Hence, an accumulated error will be definitely introduced after such integration. This paper presents a novel time-domain-advance integration method for transient elastodynamic problems in which the exact initial conditions are strictly satisfied for the solutions for each time step. In this way, the accumu- lated error can be eliminated and the approximate solutions will converge to the exact ones uniformly on the whole time domain. Therefore. the new method is more accurate. When applying to a structural dynamic problem, the present mehtod does not have to use the initial acceleration as is required by most other algorithms and the corresponding computation can be avoided. The present method is simple in representation, easy to be programmed, and especially suitable for accurate analyses of long-time problems. The comparison of numerical results with exact ones shows that the present method is much more accurate than some most widely used algorithms.
文摘Synthetic aperture radar can provide two dimension images by converting the acquired echoed SAR signal to target’s coordinate and reflectivity. With the advancement of sophisticated SAR signal processing, more and more SAR imaging methods have been proposed for synthetic aperture radar which works at near field and the Fresnel approximation is not appropriate. Time domain correlation is a kind of digital reconstruction method based on processing the synthetic aperture radar data in the two-dimensional frequency domain via Fourier transform. It reconstructs SAR image via simply correlation without any need for approximation or interpolation. But its high computational cost for correlation makes it unsuitable for real time imaging. In order to reduce the computational burden a modified algorithm about time domain correlation was given in this paper. It also can take full advantage of parallel computations of the imaging processor. Its practical implementation was proposed and the preliminary simulation results were presented. Simulation results show that the proposed algorithm is a computationally efficient way of implementing the reconstruction in real time SAR image processing.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB monopole is used to obtain the band-notched characteristic for 5 GHz wireless local area network (WLAN) band. The measured results show that voltage standing wave ration (VSWR) less than 2 covers 3.1-10.6 GHz operating band and VSWR more than 2 is within 5.150-5.825 GHz notched one with the highest value of 5.6. Agreement among the calculated, HFSS simulated and measured results validates the effiectiveness of this MGA-FDTD method, which is efficient for UWB antennas design.
基金supported by the Key Laboratory of Millimeter Waves of China (K200907)
文摘Because the conventional ultra wideband(UWB) radar imaging algorithm cannot meet the demand in the capability of multiple targets detection,a novel UWB radar imaging algorithm based on the near field radiation theory of dipole is presented.On the foundation of researching the principle of a time domain imaging algorithm,the back projection(BP) algorithm is derived and analyzed.Firstly,the far field sampling data are transferred to the near field sampling data by using the near field radiation theory of dipole.Then the BP algorithm is applied to target detection.The capability of the new algorithm to detect the multi-target is verified by using the finite-difference time-domain method,and the threedimensional images of targets are obtained.The coupling effect between targets for imaging is analyzed.The simulation results show that the new UWB radar imaging algorithm based on the near field radiation theory of dipole could weaken the coupling effect for imaging,and as a result the quality of imaging is improved.
文摘China has a vast territory with a great demand for electricity. However, the resources are in reverse distribution in the country. Therefore, high voltage direct current transmission has great practical significance and been widely used. However, traditional fault location methods have a lot of problems in engineering application for the length of transmission line and the complexity of the terrain. This paper proposes a comprehensive evaluation algorithm based on the travelling wave method and time domain method. It also proposes a concept of fault point reliability. This algorithm analyzes the fault point reliability in the whole transmission line to determine the specific location of the fault point. This paper proves that the algorithm has high reliability by PSCAD simulation software.
文摘With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, new antennas should be developed to provide larger bandwidth and at the same time small dimensions. Although the gain in bandwidth performances of an antenna are directly related to its dimensions in relation to the wavelength, the aim is to keep the overall size of the antenna constant and from there, find the geometry and structure that give the best performance. The design and bandwidth optimization of a Planar Inverted-F Antenna (PIFA) were introduced in order to achieve a larger bandwidth in the 2 GHz band, using two optimization techniques based upon genetic algorithms (GA), namely the Binary Coded GA (BCGA) and Real-Coded GA (RCGA). During the optimization process, the different PIFA models were evaluated using the finite-difference time domain (FDTD) method-a technique belonging to the general class of differential time domain numerical modeling methods.