期刊文献+
共找到2,883篇文章
< 1 2 145 >
每页显示 20 50 100
Cross-Dimension Attentive Feature Fusion Network for Unsupervised Time-Series Anomaly Detection 被引量:1
1
作者 Rui Wang Yao Zhou +2 位作者 Guangchun Luo Peng Chen Dezhong Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3011-3027,共17页
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst... Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection. 展开更多
关键词 time series anomaly detection unsupervised feature learning feature fusion
在线阅读 下载PDF
Intelligent recognition and information extraction of radar complex jamming based on time-frequency features
2
作者 PENG Ruihui WU Xingrui +3 位作者 WANG Guohong SUN Dianxing YANG Zhong LI Hongwen 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1148-1166,共19页
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p... In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results. 展开更多
关键词 complex jamming recognition time frequency feature convolutional neural network(CNN) parameter estimation
在线阅读 下载PDF
Feature extraction and damage alarming using time series analysis 被引量:4
3
作者 刘毅 李爱群 +1 位作者 费庆国 丁幼亮 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期86-91,共6页
Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis i... Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM. 展开更多
关键词 feature extraction damage alarming time series analysis structural health monitoring
在线阅读 下载PDF
Experimental validation of a signal-based approach for structural earthquake damage detection using fractal dimension of time frequency feature 被引量:2
4
作者 Tao Dongwang Mao Chenxi +1 位作者 Zhang Dongyu Li Hui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期671-680,共10页
This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resis... This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resist frame (MRF), and validates the approach with shaking table tests. The time frequency feature (TFF) of the relative displacement at measured story is defined as the real part of the coefficients of the analytical wavelet transform. The fractal dimension (FD) is to quantify the TFF within the fundamental frequency band using box counting method. It is verified that the FDTFFs at all stories of the linear MRF are identical with the help of static condensation method and modal superposition principle, while the FDTFFs at the stories with localized nonlinearities due to damage will be different from those at the stories without nonlinearities using the reverse-path methodology. By comparing the FDTFFs of displacements at measured stories in a structure, the damage-induced nonlinearity of the structure under strong ground motion can be detected and localized. Finally shaking table experiments on a 1:8 scale sixteen-story three-bay steel MRF with added frictional dampers, which generate local nonlinearities, are conducted to validate the approach. 展开更多
关键词 earthquake damage detection time frequency feature fractal dimension signal-based shaking table test frictional damper
在线阅读 下载PDF
AUTO-EXTRACTING TECHNIQUE OF DYNAMIC CHAOS FEATURES FOR NONLINEAR TIME SERIES 被引量:6
5
作者 CHEN Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期524-529,共6页
The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature informa... The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method. 展开更多
关键词 Nonlinear time series analysis Chaos feature extracting Fault diagnosis
在线阅读 下载PDF
HQNN-SFOP:Hybrid Quantum Neural Networks with Signal Feature Overlay Projection for Drone Detection Using Radar Return Signals-A Simulation
6
作者 Wenxia Wang Jinchen Xu +4 位作者 Xiaodong Ding Zhihui Song Yizhen Huang Xin Zhou Zheng Shan 《Computers, Materials & Continua》 SCIE EI 2024年第10期1363-1390,共28页
With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ... With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals. 展开更多
关键词 Quantum computing hybrid quantum neural network drone detection using radar signals time domain features
在线阅读 下载PDF
Analysis of OSA Syndrome from PPG Signal Using CART-PSO Classifier with Time Domain and Frequency Domain Features 被引量:1
7
作者 N.Kins Burk Sunil R.Ganesan B.Sankaragomathi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期351-375,共25页
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ... Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO. 展开更多
关键词 OBSTRUCTIVE sleep APNEA photoplethysmogram SIGNAL time DOMAIN featureS frequency DOMAIN featureS classification and regression tree CLASSIFIER particle swarm optimization algorithm.
暂未订购
Feature Extraction and Recognition for Rolling Element Bearing Fault Utilizing Short-Time Fourier Transform and Non-negative Matrix Factorization 被引量:29
8
作者 GAO Huizhong LIANG Lin +1 位作者 CHEN Xiaoguang XU Guanghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期96-105,共10页
Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smar... Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space. 展开更多
关键词 time-frequency distribution non-negative matrix factorization rolling element bearing feature extraction
在线阅读 下载PDF
Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data 被引量:17
9
作者 TAO Jian-bin WU Wen-bin +2 位作者 ZHOU Yong WANG Yu JIANG Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第2期348-359,共12页
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a... By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat. 展开更多
关键词 time-series MODIS data phenological feature peak before wintering winter wheat mapping
在线阅读 下载PDF
Automatic Feature Point Detection and Tracking of Human Actions in Time-of-flight Videos 被引量:8
10
作者 Xiaohui Yuan Longbo Kong +1 位作者 Dengchao Feng Zhenchun Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期677-685,共9页
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag... Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms. 展开更多
关键词 feature point human pose detection joint detection time-of-flight(ToF) videos
在线阅读 下载PDF
Positioning performance analysis of the time sum of arrival algorithm with error features 被引量:1
11
作者 宫峰勋 马艳秋 《Optoelectronics Letters》 EI 2018年第2期133-137,共5页
The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location ... The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems. 展开更多
关键词 Positioning performance analysis of the time sum of arrival algorithm with error features
原文传递
Discussion on the feature of strong earthquake: Orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake
12
作者 张晓东 张永仙 +1 位作者 吕梅梅 余素荣 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第6期598-605,共8页
In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors... In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors such as the earth rotation, earth tides are analyzed. The results show that: the giant earthquakes with the magnitude more than 8 occurred about every 24 years and the earthquakes with the magnitude more than 7 about every 7 years in Chinese mainland. The Western Kunlun Mountain M=8.1 earthquake exactly occurred at the expected time; The spatial distance show approximately the same distances between each two swarms. The earth rotation, earth tide, sun tide and sun magnetic field have played a role of modulation and triggering in the intensity. At last, the condi-tions for earthquake generation and occurrence are also discussed. 展开更多
关键词 giant earthquake time space and intensity in order feature
在线阅读 下载PDF
Peripheral arterial filling time and peripheral retina fluorescence features in ultra-widefield angiography
13
作者 Hai-Cheng She Xi-Fang Zhang +2 位作者 Yong-Peng Zhang Xuan Jiao Hai-Ying Zhou 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第7期1034-1040,共7页
AIM:To evaluate the peripheral arterial filling time(PAFT)and venous filling time(VFT)in eyes without known diseases that may influence filling process using ultra-widefield(UWF)fluorescein angiography(FA),and to revi... AIM:To evaluate the peripheral arterial filling time(PAFT)and venous filling time(VFT)in eyes without known diseases that may influence filling process using ultra-widefield(UWF)fluorescein angiography(FA),and to review the peripheral retina fluorescence features.METHODS:A total of 30 eyes of 30 patients were retrospectively reviewed in this observational study.UWFFA was performed using Optos 200Tx.PAFT and VFT was recorded.The interval between the arterial or venous filling completion and the previous photo was documented.The appearance of the far peripheral retina was described as either granular background fluorescence or mottled fluorescent band or vascular leakage.Terminal vascular patterns was described as loop pattern or branching pattern.Microvascular abnormalities such as arteriovenous shunting,vessels crossing the horizontal raphe,right angle vessels,terminal networks,capillary nonperfusion,drusen or microaneurysms were evaluated.RESULTS:The normal limits of PAFT was 3.397-8.984s and 4.399-11.753s for VFT.The appearance of the far peripheral retina,defined as granular background(63%),mottled fluorescence(20%),or vascular leakage(17%),was symmetrical between both eyes.Capillary nonperfusion(23%)and microaneurysms(40%)were more frequently found in eyes with loop pattern than in eyes with branching pattern.Other peripheral signs such as right-angle vessels(73%),and terminal networks(80%)were commonly seen on UWF-FA in the normal peripheral retina.CONCLUSION:The main courses of retinal artery and vein filling time are overlapping with each other on UWF-FA.Notably,the arterial filling process is completed in the arteriovenous phase rather than the traditionally named arterial phase.There are various manifestations in the peripheral retina of normal eyes. 展开更多
关键词 peripheral arterial filling time venous filling time ultra-widefield fluorescein angiography peripheral retina fluorescence features
原文传递
New supervised learning classifiers for structural damage diagnosis using time series features from a new feature extraction technique
14
作者 Masoud Haghani Chegeni Mohammad Kazem Sharbatdar +1 位作者 Reza Mahjoub Mahdi Raftari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期169-191,共23页
The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduce... The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduced to extract damage-sensitive features from auto-regressive models.This approach sets out to improve current feature extraction techniques in the context of time series modeling.The coefficients and residuals of the AR model obtained from the proposed approach are selected as the main features and are applied to the proposed supervised learning classifiers that are categorized as coefficient-based and residual-based classifiers.These classifiers compute the relative errors in the extracted features between the undamaged and damaged states.Eventually,the abilities of the proposed methods to localize and quantify single and multiple damage scenarios are verified by applying experimental data for a laboratory frame and a four-story steel structure.Comparative analyses are performed to validate the superiority of the proposed methods over some existing techniques.Results show that the proposed classifiers,with the aid of extracted features from the proposed feature extraction approach,are able to locate and quantify damage;however,the residual-based classifiers yield better results than the coefficient-based classifiers.Moreover,these methods are superior to some classical techniques. 展开更多
关键词 structural damage diagnosis statistical pattern recognition feature extraction time series analysis supervised learning CLASSIFICATION
在线阅读 下载PDF
Feature Selection for Time Series Modeling
15
作者 Qing-Guo Wang Xian Li Qin Qin 《Journal of Intelligent Learning Systems and Applications》 2013年第3期152-164,共13页
In machine learning, selecting useful features and rejecting redundant features is the prerequisite for better modeling and prediction. In this paper, we first study representative feature selection methods based on c... In machine learning, selecting useful features and rejecting redundant features is the prerequisite for better modeling and prediction. In this paper, we first study representative feature selection methods based on correlation analysis, and demonstrate that they do not work well for time series though they can work well for static systems. Then, theoretical analysis for linear time series is carried out to show why they fail. Based on these observations, we propose a new correlation-based feature selection method. Our main idea is that the features highly correlated with progressive response while lowly correlated with other features should be selected, and for groups of selected features with similar residuals, the one with a smaller number of features should be selected. For linear and nonlinear time series, the proposed method yields high accuracy in both feature selection and feature rejection. 展开更多
关键词 time SERIES feature SELECTION CORRELATION Analysis Modeling NONLINEAR Systems
暂未订购
Space moving target detection using time domain feature
16
作者 王敏 陈金勇 +1 位作者 高峰 赵金宇 《Optoelectronics Letters》 EI 2018年第1期67-70,共4页
The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space ... The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects(target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10^(-5), which outperforms those of compared algorithms. 展开更多
关键词 AS Space moving target detection using time domain feature
原文传递
An Improved Time Series Symbolic Representation Based on Multiple Features and Vector Frequency Difference
17
作者 Lijuan Yan Xiaotao Wu Jiaqing Xiao 《Journal of Computer and Communications》 2022年第6期44-62,共19页
Symbolic Aggregate approXimation (SAX) is an efficient symbolic representation method that has been widely used in time series data mining. Its major limitation is that it relies exclusively on the mean values of segm... Symbolic Aggregate approXimation (SAX) is an efficient symbolic representation method that has been widely used in time series data mining. Its major limitation is that it relies exclusively on the mean values of segmented time series to derive the symbols. So, many important features of time series are not considered, such as extreme value, trend, fluctuation and so on. To solve this issue, we propose in this paper an improved Symbolic Aggregate approXimation based on multiple features and Vector Frequency Difference (SAX_VFD). SAX_VFD discriminates between time series by adopting an adaptive feature selection method. Furthermore, SAX_VFD is endowed with a new distance that takes into account the vector frequency difference between the symbolic sequence. We demonstrate the utility of the SAX_VFD on the time series classification task. The experimental results show that the proposed method has a better performance in terms of accuracy and dimensionality reduction compared to the so far published SAX based reduction techniques. 展开更多
关键词 time Series REPRESENTATION SAX feature Selection CLASSIFICATION
在线阅读 下载PDF
Digital modulation classification using multi-layer perceptron and time-frequency features
18
作者 Yuan Ye Mei Wenbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期249-254,共6页
Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributio... Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier. 展开更多
关键词 Digital modulation classification time-frequency feature time-frequency distribution Multi-layer perceptron.
在线阅读 下载PDF
Changing trends of clinicopathologic features and survival duration after surgery for gastric cancer in Northeast China 被引量:2
19
作者 Zhao Zhai Zi-Yu Zhu +11 位作者 Xi-Liang Cong Bang-Ling Han Jia-Liang Gao Xin Yin Yu Zhang Sheng-Han Lou Tian-Yi Fang Yi-Min Wang Chun-Feng Li Xue-Feng Yu Yan Ma Ying-Wei Xue 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2020年第10期1119-1132,共14页
BACKGROUND Through analyzing the data from a single institution in Northeast China,this study revealed the possible clinicopathologic characteristics that influence the prognosis of patients with gastric cancer(GC).AI... BACKGROUND Through analyzing the data from a single institution in Northeast China,this study revealed the possible clinicopathologic characteristics that influence the prognosis of patients with gastric cancer(GC).AIM To evaluate the changing trends of clinicopathologic features and survival duration after surgery in patients with GC in Northeast China,which is a highprevalence area of GC.METHODS The study analyzed the difference in clinicopathologic features and survival duration after surgery of 5887 patients who were histologically diagnosed with GC at the Harbin Medical University Cancer Hospital.The study mainly analyzed the data in three periods,2000 to 2004(Phase 1),2005 to 2009(Phase 2),and 2010 to 2014(Phase 3).RESULTS Over time,the postoperative survival rate significantly increased from 2000 to 2014.In the past 15 years,compared with Phases 1 and 2,the tumor size was smaller in Phase 3(P<0.001),but the proportion of high-medium differentiated tumors increased(P<0.001).The proportion of early GC gradually increased from 3.9%to 14.4%(P<0.001).A surprising improvement was observed in the mean number of retrieved lymph nodes,ranging from 11.4 to 27.5(P<0.001).The overall 5-year survival rate increased from 24%in Phase 1 to 43.8%in Phase 3.Through multivariate analysis,it was found that age,tumor size,histologic type,tumor-node-metastasis stage,depth of invasion,lymph node metastasis,surgical approach,local infiltration,radical extent,number of retrieved lymph nodes,and age group were independent risk factors that influenced the prognosis of patients with GC.CONCLUSION The clinical features of GC in Northeast China changed during the observation period.The increasing detection of early GC and more standardized surgical treatment effectively prolonged lifetimes. 展开更多
关键词 Gastric cancer Clinicopathologic features SURVIVAL time trends EPIDEMIOLOGY GASTRECTOMY
暂未订购
Emotional Speech Synthesis Based on Prosodic Feature Modification 被引量:2
20
作者 Ling He Hua Huang Margaret Lech 《Engineering(科研)》 2013年第10期73-77,共5页
The synthesis of emotional speech has wide applications in the field of human-computer interaction, medicine, industry and so on. In this work, an emotional speech synthesis system is proposed based on prosodic featur... The synthesis of emotional speech has wide applications in the field of human-computer interaction, medicine, industry and so on. In this work, an emotional speech synthesis system is proposed based on prosodic features modification and Time Domain Pitch Synchronous OverLap Add (TD-PSOLA) waveform concatenative algorithm. The system produces synthesized speech with four types of emotion: angry, happy, sad and bored. The experiment results show that the proposed emotional speech synthesis system achieves a good performance. The produced utterances present clear emotional expression. The subjective test reaches high classification accuracy for different types of synthesized emotional speech utterances. 展开更多
关键词 EMOTIONAL SPEECH Synthesis Prosodic features time Domain PITCH SYNCHRONOUS OVERLAP ADD
暂未订购
上一页 1 2 145 下一页 到第
使用帮助 返回顶部