Biologically,because of the impact of reproduction period and nonlocal dispersal of HIV-infected cells,time delay and spatial heterogeneity should be considered.In this paper,we establish an HIV infection model with n...Biologically,because of the impact of reproduction period and nonlocal dispersal of HIV-infected cells,time delay and spatial heterogeneity should be considered.In this paper,we establish an HIV infection model with nonlocal dispersal and infection age.Moreover,applying the theory of Fourier transformation and von Foerster rule,we transform the model to an integrodifferential equation with nonlocal time delay and dispersal.The well-posedness,positivity,and boundedness of the solution for the model are studied.展开更多
This paper investigates the dynamical behaviour of the Liu system with time delayed feedback. Two typical situations are considered and the effect of time-delay parameter on the dynamics of the system is discussed. It...This paper investigates the dynamical behaviour of the Liu system with time delayed feedback. Two typical situations are considered and the effect of time-delay parameter on the dynamics of the system is discussed. It is shown that the Liu system with time delayed feedback may exhibit interesting and extremely rich dynamical behaviour. The evolution of the dynamics is shown to be complex with varying time-delay parameter. Moreover, the strange attractor like ‘wormhole' is detected via numerical simulations.展开更多
This paper investigates the synchronization of time delayed complex dynamical networks with periodical on-off coupling. Both the theoretical and numerical results show that, in spite of time delays and on-off coupling...This paper investigates the synchronization of time delayed complex dynamical networks with periodical on-off coupling. Both the theoretical and numerical results show that, in spite of time delays and on-off coupling, two networks may synchronize if the coupling strength and the on-off rate are large enough. It is shown that, for undirected and strongly connected networks, the upper bound of time delays for synchronization is a decreasing function of the absolute value of the minimum eigenvalue of the adjacency matrix. The theoretical analysis confirms the numerical results and provides a better understanding of the influence of time delays and on-off coupling on the synchronization transition. The influence of random delays on the synchronization is also discussed.展开更多
In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the ...In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor. Based on the Lyapunov stability theory, the sufficient condition for the projective synchronization is calculated theoretically. Numerical simulations of the projective synchronization between Maekey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm.展开更多
To investigate impact of time delays on the small signal stability of power systems, the least-damped eigenvalues with the smallest damping ratios have been calculated by eigen-analysis methods based on Solution Opera...To investigate impact of time delays on the small signal stability of power systems, the least-damped eigenvalues with the smallest damping ratios have been calculated by eigen-analysis methods based on Solution Operator Discretization (SOD) with Pseudo-Spectral collocation (PS) and Implicit Runge-Kutta (IRK) methods. This paper evolves SOD-PSIIRK into their partial counterparts, i.e., PSOD-PSIIRK, with greatly enhanced efficiency and reliability in analyzing large-scale time delayed power systems. Compared with SOD-PSIIRK, PSOD-PSIIRK are characterized in constructing low order discretization matrices of solution operator as well as efficiently and directly solving the embedded Matrix-Inverse-Vector Products (MIVPs). The dimensions of the discretization matrices of solution operator are largely reduced as only the retarded state variables are discretized, rather than all state variables as in SOD-PSIIRK. Meanwhile, the proposed PSOD-PSIIRK optimize the most computationally expensive operations in SOD-PSIIRK by avoiding the iterative solutions to the two embedded MIVPs. PSOD-PS/IRK directly and efficiently compute the MIVPs via factorizing the Kronecker product-like discretization matrices of the solution operator into Schur complements. The Central China-North China ultra-high-voltage power grid with 80577 state variables serves to validate the proposed PSOD-PSIIRK and shows that compared with SOD-PSIIRK, the computational time consumed by PSOD-PSIIRK is cut down by 49.96 times without loss of any accuracy.展开更多
Considering the impact of time delay in the lateral stiffness of the primary suspension and stochastic disturbances of equivalent conicity on the wheelset system, a stochastic time-delayed wheelset system is establish...Considering the impact of time delay in the lateral stiffness of the primary suspension and stochastic disturbances of equivalent conicity on the wheelset system, a stochastic time-delayed wheelset system is established. The wheelset system is transformed into a onedimensional Ito stochastic differential equation using central manifold and stochastic averaging methods. The analysis of the system's stochastic stability is conducted through the maximum Lyapunov exponent and singular boundary theory. The combination of the stationary probability density method and numerical simulation is employed to discuss the types and conditions of stochastic P-bifurcation in the wheelset system. The results indicate that changes in speed and time delay induce stochastic P-bifurcations in the wheelset system, while changes in noise intensity do not lead to stochastic P-bifurcations. Both time delay and equivalent conicity affect the critical speed of the wheelset system, and the critical speed gradually increases with the decrease of time delay and equivalent conicity.展开更多
The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled p...The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.展开更多
This paper studies the bandgap characteristics of a locally resonant metamaterial beam with time delays.The dispersion relations are addressed based on transfer matrix method.The governing equations of motion of the b...This paper studies the bandgap characteristics of a locally resonant metamaterial beam with time delays.The dispersion relations are addressed based on transfer matrix method.The governing equations of motion of the beam in the frequency domain are given according to spectral element method.The amplitude-frequency responses of the forced beam are determined by solving linear algebraic equations.The obtained results show that the time-delayed feedback control has great relationships with the location,width and number of the bandgaps.It is interesting that the time delay can change the direction of the movement of the bandgap and give rise to the generation of multiple bandgaps.The influences of different combinations of control parameters on the bandgap properties are shown,such as broadening effects.展开更多
Incorporating asymmetric quadratic and cubic stiffnesses into a time-delayed Duffing oscillator provides a more accurate representation of practical systems,where the resulting nonlinearities critically influence subh...Incorporating asymmetric quadratic and cubic stiffnesses into a time-delayed Duffing oscillator provides a more accurate representation of practical systems,where the resulting nonlinearities critically influence subharmonic resonance phenomena,yet comprehensive investigations remain limited.This study employs the generalized harmonic balance(HB)method to conduct an analytical investigation of the subharmonic resonance behavior in asymmetric stiffness nonlinear systems with time delay.To further examine the switching behavior between primary and subharmonic resonances,a numerical continuation approach combining the shooting method and the parameter continuation algorithm is developed.The analytical and numerical continuation solutions are validated through direct numerical integration.Subsequently,the switching behavior and associated bifurcation points are analyzed by means of the numerical continuation results in conjunction with the Floquet theory.Finally,the effects of delay parameters on the existence range of subharmonic responses are discussed in detail,and the influence of initial conditions on system dynamics is explored with basin of attraction plots.This work establishes a comprehensive framework for the analytical and numerical study on time-delayed nonlinear systems with asymmetric stiffness,providing valuable theoretical insights into the stability management of such dynamic systems.展开更多
In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that globa...In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.展开更多
We experimentally analyze the effect of the optical power on the time delay signature identification and the random bit generation in chaotic semiconductor laser with optical feedback.Due to the inevitable noise durin...We experimentally analyze the effect of the optical power on the time delay signature identification and the random bit generation in chaotic semiconductor laser with optical feedback.Due to the inevitable noise during the photoelectric detection and analog-digital conversion,the varying of output optical power would change the signal to noise ratio,then impact time delay signature identification and the random bit generation.Our results show that,when the optical power is less than-14 dBm,with the decreasing of the optical power,the actual identified time delay signature degrades and the entropy of the chaotic signal increases.Moreover,the extracted random bit sequence with lower optical power is more easily pass through the randomness testing.展开更多
This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder ma...This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.展开更多
We study the transport of overdamped Brownian particles in a symmetricaJly periodic potential in the presence of an asymmetrically ac driving force and a time-delayed feedback. It is found that for low frequencies, th...We study the transport of overdamped Brownian particles in a symmetricaJly periodic potential in the presence of an asymmetrically ac driving force and a time-delayed feedback. It is found that for low frequencies, the average velocity can be negative by changing the driving amplitude, for high frequencies, there exists an optimized driving amplitude at which the average velocity takes its maximum value. Additionally, there is a threshold value of driving amplitude below which no directed transport can be obtained for high frequencies. For the large value of the delay time, the average velocity is independent of the delay time.展开更多
With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this p...With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions.With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous "jump" bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincar′e maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems.展开更多
Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue lengt...Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, tbe effectiveness and feasibility of the novel model in internet congestion control are verified.展开更多
In this paper, the control of chemical chaotic dynamical system is investigated by time-delayed feedback control technique.The controllability and the stability of the equilibriums and local Hopf bifurcation of the sy...In this paper, the control of chemical chaotic dynamical system is investigated by time-delayed feedback control technique.The controllability and the stability of the equilibriums and local Hopf bifurcation of the system are verified. Some numerical simulations which show the effectiveness of the time-delayed feedback control method are provided.展开更多
The controllable transition between Turing and antispiral patterns is studied by using a time-delayed-feedback strategy in a FitzHugh-Nagumo model. We treat the time delay as a perturbation and analyse the effect of t...The controllable transition between Turing and antispiral patterns is studied by using a time-delayed-feedback strategy in a FitzHugh-Nagumo model. We treat the time delay as a perturbation and analyse the effect of the time delay on the Turing and Hopf instabilities near the Turing Hopf codimension-two phase space. Numerical simulations show that the transition between the Turing patterns (hexagon, stripe, and honeycomb), the dual-mode antispiral, and the antispiral by applying appropriate feedback parameters. The dual-mode antispiral pattern originates from the competition between the Turing and Hopf instabilities. Our results have shown the flexibility of the time delay on controlling the pattern formations near the Turing-Hopf codimension-two phase space.展开更多
A new nonlinear predator-prey model with incomplete trophic transfer is introduced. In this model, we assume that the rate of the trophic absorption of the predator is less than the rate of the conversion of consumed ...A new nonlinear predator-prey model with incomplete trophic transfer is introduced. In this model, we assume that the rate of the trophic absorption of the predator is less than the rate of the conversion of consumed prey to predator in the Ivlev-type functional responses. The existence and uniqueness of the positive equilibrium of the model and the stability of the equilibrium of the model are studied under various conditions. Hopf bifurcation analysis of the delayed model is provided.展开更多
In this paper, an optimal H∞ control algorithm was applied to the design of an active tendon system installed at the first story of a multi-story building to reduce its interstory drift due to earthquake excitations....In this paper, an optimal H∞ control algorithm was applied to the design of an active tendon system installed at the first story of a multi-story building to reduce its interstory drift due to earthquake excitations. To achieve optimal control performance and to guarantee the stability of the control system, an optimum strategy to select control parameters γ and α was developed. Analytical expressions of the upper and the lower bounds of γ and α were obtained for a single degree-of-freedom system with state feedback control. The selection ranges for both γ and α are graphically defined so that the controlled system is always stable and the control performance is better than by the conventional LQR control algorithm. Numerical results from a controlled three-story building under real earthquake excitations demonstrate that the peak first interstory drift can be significantly reduced with maximum control force around 10% of the building weight. An optimum design flow chart was provided. In addition, for a time-delayed structure, this study gave explicit formulae to calculate the critical values of γ and a. The system stability and control performance can thus be guaranteed even with time delay.展开更多
We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ...We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.展开更多
基金Supported by Funding for the National Natural Science Foundation of China(12201557,12001483,61807006)。
文摘Biologically,because of the impact of reproduction period and nonlocal dispersal of HIV-infected cells,time delay and spatial heterogeneity should be considered.In this paper,we establish an HIV infection model with nonlocal dispersal and infection age.Moreover,applying the theory of Fourier transformation and von Foerster rule,we transform the model to an integrodifferential equation with nonlocal time delay and dispersal.The well-posedness,positivity,and boundedness of the solution for the model are studied.
基金Project supported by the Science Foundation of Huazhong University of Science and Technology (Grant No 2006Q003B)
文摘This paper investigates the dynamical behaviour of the Liu system with time delayed feedback. Two typical situations are considered and the effect of time-delay parameter on the dynamics of the system is discussed. It is shown that the Liu system with time delayed feedback may exhibit interesting and extremely rich dynamical behaviour. The evolution of the dynamics is shown to be complex with varying time-delay parameter. Moreover, the strange attractor like ‘wormhole' is detected via numerical simulations.
基金Supported by the National Natural Science Foundation of China under Grant No.61681240393the Fundamental Research Funds for the Central Universities under Grant No.2015XKMS076
文摘This paper investigates the synchronization of time delayed complex dynamical networks with periodical on-off coupling. Both the theoretical and numerical results show that, in spite of time delays and on-off coupling, two networks may synchronize if the coupling strength and the on-off rate are large enough. It is shown that, for undirected and strongly connected networks, the upper bound of time delays for synchronization is a decreasing function of the absolute value of the minimum eigenvalue of the adjacency matrix. The theoretical analysis confirms the numerical results and provides a better understanding of the influence of time delays and on-off coupling on the synchronization transition. The influence of random delays on the synchronization is also discussed.
基金Supported by Research Project of Hubei Provincial Department of Education under Grant No. Q20101609Foundation of Wuhan Textile University under Grant No. 105040
文摘In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor. Based on the Lyapunov stability theory, the sufficient condition for the projective synchronization is calculated theoretically. Numerical simulations of the projective synchronization between Maekey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China(No.51677107,52077126)。
文摘To investigate impact of time delays on the small signal stability of power systems, the least-damped eigenvalues with the smallest damping ratios have been calculated by eigen-analysis methods based on Solution Operator Discretization (SOD) with Pseudo-Spectral collocation (PS) and Implicit Runge-Kutta (IRK) methods. This paper evolves SOD-PSIIRK into their partial counterparts, i.e., PSOD-PSIIRK, with greatly enhanced efficiency and reliability in analyzing large-scale time delayed power systems. Compared with SOD-PSIIRK, PSOD-PSIIRK are characterized in constructing low order discretization matrices of solution operator as well as efficiently and directly solving the embedded Matrix-Inverse-Vector Products (MIVPs). The dimensions of the discretization matrices of solution operator are largely reduced as only the retarded state variables are discretized, rather than all state variables as in SOD-PSIIRK. Meanwhile, the proposed PSOD-PSIIRK optimize the most computationally expensive operations in SOD-PSIIRK by avoiding the iterative solutions to the two embedded MIVPs. PSOD-PS/IRK directly and efficiently compute the MIVPs via factorizing the Kronecker product-like discretization matrices of the solution operator into Schur complements. The Central China-North China ultra-high-voltage power grid with 80577 state variables serves to validate the proposed PSOD-PSIIRK and shows that compared with SOD-PSIIRK, the computational time consumed by PSOD-PSIIRK is cut down by 49.96 times without loss of any accuracy.
基金Supported by the National Natural Science Foundation of China (61863022)the Key Project of Gansu Province Natural Science Foundation(23JRRA882)。
文摘Considering the impact of time delay in the lateral stiffness of the primary suspension and stochastic disturbances of equivalent conicity on the wheelset system, a stochastic time-delayed wheelset system is established. The wheelset system is transformed into a onedimensional Ito stochastic differential equation using central manifold and stochastic averaging methods. The analysis of the system's stochastic stability is conducted through the maximum Lyapunov exponent and singular boundary theory. The combination of the stationary probability density method and numerical simulation is employed to discuss the types and conditions of stochastic P-bifurcation in the wheelset system. The results indicate that changes in speed and time delay induce stochastic P-bifurcations in the wheelset system, while changes in noise intensity do not lead to stochastic P-bifurcations. Both time delay and equivalent conicity affect the critical speed of the wheelset system, and the critical speed gradually increases with the decrease of time delay and equivalent conicity.
基金supported by Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT16),China.
文摘The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.
文摘This paper studies the bandgap characteristics of a locally resonant metamaterial beam with time delays.The dispersion relations are addressed based on transfer matrix method.The governing equations of motion of the beam in the frequency domain are given according to spectral element method.The amplitude-frequency responses of the forced beam are determined by solving linear algebraic equations.The obtained results show that the time-delayed feedback control has great relationships with the location,width and number of the bandgaps.It is interesting that the time delay can change the direction of the movement of the bandgap and give rise to the generation of multiple bandgaps.The influences of different combinations of control parameters on the bandgap properties are shown,such as broadening effects.
基金Project supported by the National Natural Science Foundation of China(Nos.U24B2062,520754285247051087)+1 种基金the Two-chain Fusion High-end Machine Tool Project of Shaanxi Province of China(No.2021LLRh-01-02)the Youth Fund of the National Natural Science Foundation of China(No.52205281)。
文摘Incorporating asymmetric quadratic and cubic stiffnesses into a time-delayed Duffing oscillator provides a more accurate representation of practical systems,where the resulting nonlinearities critically influence subharmonic resonance phenomena,yet comprehensive investigations remain limited.This study employs the generalized harmonic balance(HB)method to conduct an analytical investigation of the subharmonic resonance behavior in asymmetric stiffness nonlinear systems with time delay.To further examine the switching behavior between primary and subharmonic resonances,a numerical continuation approach combining the shooting method and the parameter continuation algorithm is developed.The analytical and numerical continuation solutions are validated through direct numerical integration.Subsequently,the switching behavior and associated bifurcation points are analyzed by means of the numerical continuation results in conjunction with the Floquet theory.Finally,the effects of delay parameters on the existence range of subharmonic responses are discussed in detail,and the influence of initial conditions on system dynamics is explored with basin of attraction plots.This work establishes a comprehensive framework for the analytical and numerical study on time-delayed nonlinear systems with asymmetric stiffness,providing valuable theoretical insights into the stability management of such dynamic systems.
基金supported by the Zhejiang Provincial Natural Science Foundation(LY24F030011,LY23F030005)the National Natural Science Foundation of China(62373131).
文摘In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.62005129 and 62175116)。
文摘We experimentally analyze the effect of the optical power on the time delay signature identification and the random bit generation in chaotic semiconductor laser with optical feedback.Due to the inevitable noise during the photoelectric detection and analog-digital conversion,the varying of output optical power would change the signal to noise ratio,then impact time delay signature identification and the random bit generation.Our results show that,when the optical power is less than-14 dBm,with the decreasing of the optical power,the actual identified time delay signature degrades and the entropy of the chaotic signal increases.Moreover,the extracted random bit sequence with lower optical power is more easily pass through the randomness testing.
基金supported by the Autonomous Innovation Team Foundation for“20 Items of the New University”of Jinan City(202228087)the National Natural Science Foundation of China(62073190).
文摘This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 61072029 and 11175067the Guangdong Provincial Natural Science Foundation under Grant Nos. 10151063101000025 and S2011010003323
文摘We study the transport of overdamped Brownian particles in a symmetricaJly periodic potential in the presence of an asymmetrically ac driving force and a time-delayed feedback. It is found that for low frequencies, the average velocity can be negative by changing the driving amplitude, for high frequencies, there exists an optimized driving amplitude at which the average velocity takes its maximum value. Additionally, there is a threshold value of driving amplitude below which no directed transport can be obtained for high frequencies. For the large value of the delay time, the average velocity is independent of the delay time.
基金supported by the National Natural Science Foundation of China(Grant Nos.51475246 and 51075215)the Natural Science Foundation of Jiangsu Province of China(Grant No.Bk20131402)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China(Grand No.[2012]1707)
文摘With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions.With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous "jump" bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincar′e maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems.
基金supported by the National Natural Science Foundation of China (Grant No 70571017)the Research Foundation from Provincial Education Department of Zhejiang of China (Grant No 21186000507)
文摘Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, tbe effectiveness and feasibility of the novel model in internet congestion control are verified.
基金supported by National Natural Science Foundationof China(Nos.11261010 and 11101126)Soft Science and TechnologyProgram of Guizhou Province(No.2011LKC2030)+2 种基金Natural Scienceand Technology Foundation of Guizhou Province(No.J[2012]2100)Governor Foundation of Guizhou Province(No.[2012]53)Doctoral Foundation of Guizhou University of Finance and Economics
文摘In this paper, the control of chemical chaotic dynamical system is investigated by time-delayed feedback control technique.The controllability and the stability of the equilibriums and local Hopf bifurcation of the system are verified. Some numerical simulations which show the effectiveness of the time-delayed feedback control method are provided.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10975043 and 10947166)the Natural Science Foundation of Hebei Province,China (Grant Nos. A2011201006 and A2010000185)the Science Foundation of Hebei University
文摘The controllable transition between Turing and antispiral patterns is studied by using a time-delayed-feedback strategy in a FitzHugh-Nagumo model. We treat the time delay as a perturbation and analyse the effect of the time delay on the Turing and Hopf instabilities near the Turing Hopf codimension-two phase space. Numerical simulations show that the transition between the Turing patterns (hexagon, stripe, and honeycomb), the dual-mode antispiral, and the antispiral by applying appropriate feedback parameters. The dual-mode antispiral pattern originates from the competition between the Turing and Hopf instabilities. Our results have shown the flexibility of the time delay on controlling the pattern formations near the Turing-Hopf codimension-two phase space.
基金Supported by the Anhui Provincial Department of National Land and Resources with their Science and Technology Project entitled "Research on a Dynamic Monitoring Land Usage,Evaluation and Decision Support Management System in Wanjiang Demonstration Area"(Grant No.2011-K-23)Anhui Agricultural University,China(Grant No.YJ2012-03,No.XK2013029 and No.11201002)The Natural Sciences and Engineering Research Council of Canada
文摘A new nonlinear predator-prey model with incomplete trophic transfer is introduced. In this model, we assume that the rate of the trophic absorption of the predator is less than the rate of the conversion of consumed prey to predator in the Ivlev-type functional responses. The existence and uniqueness of the positive equilibrium of the model and the stability of the equilibrium of the model are studied under various conditions. Hopf bifurcation analysis of the delayed model is provided.
基金Ministry of Education and the Science Council (NSC) of Taiwan Under the ATU plan and Grants No. NSC 95-2625-Z-005-009
文摘In this paper, an optimal H∞ control algorithm was applied to the design of an active tendon system installed at the first story of a multi-story building to reduce its interstory drift due to earthquake excitations. To achieve optimal control performance and to guarantee the stability of the control system, an optimum strategy to select control parameters γ and α was developed. Analytical expressions of the upper and the lower bounds of γ and α were obtained for a single degree-of-freedom system with state feedback control. The selection ranges for both γ and α are graphically defined so that the controlled system is always stable and the control performance is better than by the conventional LQR control algorithm. Numerical results from a controlled three-story building under real earthquake excitations demonstrate that the peak first interstory drift can be significantly reduced with maximum control force around 10% of the building weight. An optimum design flow chart was provided. In addition, for a time-delayed structure, this study gave explicit formulae to calculate the critical values of γ and a. The system stability and control performance can thus be guaranteed even with time delay.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61203047 and 60904023)
文摘We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.