The progress from intelligent interactions requires electronic skin(E-skin)to shift from single-functional perception to multisensory capabilities.However,the intuitive and interference-free reading of multiple sensor...The progress from intelligent interactions requires electronic skin(E-skin)to shift from single-functional perception to multisensory capabilities.However,the intuitive and interference-free reading of multiple sensory signals without involving complex algorithms is a critical challenge.Herein,we propose a flexible multisensory E-skin by developing a highly homogeneous dispersion of BaTiO_(3)nanoparticles in polydimethylsiloxane dielectric layer.The E-skin is sensitive to externally applied pressure as well as temperature and can distinguish dual synergetic stimuli by the time decoupling effect.The pressure and temperature perception was achieved in an individual device,which greatly reduced the structural complexity compared with multifunctional integrated devices.The sensitivity of E-skin for pressure detection is as high as 0.0724 kPa^(−1)and the detection range reaches as wide as 15.625-10 MPa.The sensitivity to temperature detection is as high as−1.34℃^(−1)and the detection range reaches 20-200℃.More importantly,by equipping with a multilayer neural network,the evolution from tactile perception to advanced intelligent tactile cognition is demonstrated.展开更多
基金Ningbo Scientific and Technological Innovation 2025 Major Project,Grant/Award Number:2020Z022German Research Foundation(DFG)grants,Grant/Award Numbers:MA 5144/13-1,MA 5144/28-1+6 种基金the National Natural Science Foundation of China,Grant/Award Numbers:62204246,51931011,51971233,52127803,62174165the External Cooperation Program of Chinese Academy of Sciences,Grant/Award Numbers:174433KYSB20190038,174433KYSB20200013the Instrument Developing Project of the Chinese Academy of Sciences,Grant/Award Number:YJKYYQ20200030K.C.Wong Education Foundation,Grant/Award Number:GJTD-2020-11Chinese Academy of Sciences Youth Innovation Promotion Association,Grant/Award Number:2018334Zhejiang Provincial Key R&D Program,Grant/Award Numbers:2021C01183,2022C01032the National Natural Science Foundation of Zhejiang Province of China,Grant/Award Number:LQ23F040004.
文摘The progress from intelligent interactions requires electronic skin(E-skin)to shift from single-functional perception to multisensory capabilities.However,the intuitive and interference-free reading of multiple sensory signals without involving complex algorithms is a critical challenge.Herein,we propose a flexible multisensory E-skin by developing a highly homogeneous dispersion of BaTiO_(3)nanoparticles in polydimethylsiloxane dielectric layer.The E-skin is sensitive to externally applied pressure as well as temperature and can distinguish dual synergetic stimuli by the time decoupling effect.The pressure and temperature perception was achieved in an individual device,which greatly reduced the structural complexity compared with multifunctional integrated devices.The sensitivity of E-skin for pressure detection is as high as 0.0724 kPa^(−1)and the detection range reaches as wide as 15.625-10 MPa.The sensitivity to temperature detection is as high as−1.34℃^(−1)and the detection range reaches 20-200℃.More importantly,by equipping with a multilayer neural network,the evolution from tactile perception to advanced intelligent tactile cognition is demonstrated.