期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Efficient Task Allocation for Energy and Execution Time Trade-Off in Edge Computing Using Multi-Objective IPSO
1
作者 Jafar Aminu Rohaya Latip +2 位作者 Zurina Mohd Hanafi Shafinah Kamarudin Danlami Gabi 《Computers, Materials & Continua》 2025年第8期2989-3011,共23页
As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,fo... As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,for instance,limited processing capability,a few energy sources,and erratic availability being some of the common ones.Correspondingly,these problems require an effective task allocation algorithmto optimize the resources through continued high system performance and dependability in dynamic environments.This paper proposes an improved Particle Swarm Optimization technique,known as IPSO,for multi-objective optimization in edge computing to overcome these issues.To this end,the IPSO algorithm tries to make a trade-off between two important objectives,which are energy consumption minimization and task execution time reduction.Because of global optimal position mutation and dynamic adjustment to inertia weight,the proposed optimization algorithm can effectively distribute tasks among edge nodes.As a result,it reduces the execution time of tasks and energy consumption.In comparative assessments carried out by IPSO with benchmark methods such as Energy-aware Double-fitness Particle Swarm Optimization(EADPSO)and ICBA,IPSO provides better results than these algorithms.For the maximum task size,when compared with the benchmark methods,IPSO reduces the execution time by 17.1%and energy consumption by 31.58%.These results allow the conclusion that IPSO is an efficient and scalable technique for task allocation at the edge environment.It provides peak efficiency while handling scarce resources and variable workloads. 展开更多
关键词 Keyword edge computing energy consumption execution time particle swarm optimization task allocation
在线阅读 下载PDF
GrCol-PPFL:User-Based Group Collaborative Federated Learning Privacy Protection Framework 被引量:2
2
作者 Jieren Cheng Zhenhao Liu +2 位作者 Yiming Shi Ping Luo Victor S.Sheng 《Computers, Materials & Continua》 SCIE EI 2023年第1期1923-1939,共17页
With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal p... With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal privacy data,federated learning(FL)uses data stored on edge devices to realize training tasks by contributing training model parameters without revealing the original data.However,since FL can still leak the user’s original data by exchanging gradient information.The existing privacy protection strategy will increase the uplink time due to encryption measures.It is a huge challenge in terms of communication.When there are a large number of devices,the privacy protection cost of the system is higher.Based on these issues,we propose a privacy-preserving scheme of user-based group collaborative federated learning(GrCol-PPFL).Our scheme primarily divides participants into several groups and each group communicates in a chained transmission mechanism.All groups work in parallel at the same time.The server distributes a random parameter with the same dimension as the model parameter for each participant as a mask for the model parameter.We use the public datasets of modified national institute of standards and technology database(MNIST)to test the model accuracy.The experimental results show that GrCol-PPFL not only ensures the accuracy of themodel,but also ensures the security of the user’s original data when users collude with each other.Finally,through numerical experiments,we show that by changing the number of groups,we can find the optimal number of groups that reduces the uplink consumption time. 展开更多
关键词 Federated learning privacy protection uplink consumption time
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部